Electrodynamics Tutorials/In-Class Activities
Instructor’s Guide

The guiding principle in creating these activities was that students would gain more
from being active (instead of passive) participants in the classroom. The tasks are
generally focused on either promoting an understanding of important topics from
second-semester E&M, or guiding students through derivations that would typically
be done during lecture. They were often inspired by in-class observations of
student difficulties, and have been tested in focus-group student interviews
(designed to mimic a tutorial setting) and in the classroom. We provide here
information about how they were implemented, and a summary list of the activities
and the topics they cover, including an estimate of the amount of class time they
require. Please feel free to share with us any changes you make, or your
observations regarding their use. We are currently working at refining these
materials, so please contact us if you want to be sure to have the latest versions!

We ask for your cooperation in not making solutions to these
tutorials/activities available on the open web under any circumstances, out of
respect for instructors at other institutions, and for maintaining the integrity
of our research. Other reasons for this are addressed in the implementation
notes (Section II, below).
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II. Notes on Implementation

All of the tutorials/activities contained in this package were developed for use
during class, to augment or replace standard lectures on the topics they address.
This style of implementation is in contrast to the “usual” tutorial setting, being
separate from the lecture portion of the class, but they could certainly be adapted
for use in such environments, and we encourage instructors to do so. Depending on
the topic, they require anywhere from 5 to 50 minutes of class time, and versions of
them were recently used intermittently during a course having 50-minute class
periods (three times per week over a 15-week semester). ~40% of the CU SP12
lectures were partly or fully replaced with tutorial activities. We typically oriented
students to the activities before they began with a concept test and/or discussion.
Otherwise, they were implemented at appropriate times during lecture, most often
during the middle, sometimes at the very end of class. Incorporating these student-
centered tasks into the classroom was sometimes challenging, and we describe
below some lessons we have learned about getting the most out of the time spent.

(1) Sell students on group work. Students will have their own ideas about what a
junior-level physics classroom should be like, and some may at first be reluctant
to engage in activities that differ from the standard lecture format (even when
they are familiar with them from introductory courses, and particularly if they
associate them only with “lower-level” work). Aside from the belief that they
will gain more through active participation, instructors may also remind
students that scientific argumentation (oral or written) is a skill is developed
with practice, and that scientists work almost exclusively in group settings.
Stronger students benefit from working with weaker students (and not just the
other way around) since, as we should know from our own teaching
experiences, they will never understand something so well as when they can
explain it to someone else!

(2) Hand out just before activity begins. We've found that handing out the
printed activities at the beginning of class (or a significant amount of time
before starting them) is not ideal. There will inevitably be some students who
immediately start reading through the pages or working the problems, and
mostly tune out the instructor from that point on, so instructors should be
aware they might not have the undivided attention of the class once the activity
sheets are in front of students. This can also discourage students from
collaborating with others at their table, since they’ll be ahead of everyone else
and may be reluctant to go back.

(3) Keep it closed note. We have tried to provide students with sufficient
information to complete these activities without having to refer to their notes.
Some of the tasks do require them to recall facts from memory, but this is only
in cases where we feel they should have this knowledge at their fingertips, and
instructors can certainly write out necessary equations on the board if they
wish. If there are instances where students feel they must refer to outside
sources, this should be an indication to them that they may need to devote a
little more time to studying that particular topic. We actively discouraged them
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from copying equations or following examples from the textbook, since this
does not involve the kind of understanding we are trying to promote.

(4) Introduce the activities. Students may require some kind of orientation to the
topic at hand, or need an important piece of information to get started; they may
also need you to be explicit in connecting the tasks as a whole to your overall
learning goals. We have tried to be as clear as possible in the problem
statements, and their wording has (in most cases) already been tested with
students, but what seems “obvious” to instructors may not be so for students.
We have also noticed that, even at the junior-level, some students don’t always
read each problem statement completely, often only skimming the words and
trying to glean as much information as possible from the diagrams.

(5) Activities may take longer than anticipated. All of the activities (except
where explicitly noted) have been validated through student interviews (in
their preliminary forms) and field-tested in a classroom setting. The summary
that accompanies each tutorial has an estimate of the amount of time it should
take for most students to complete the entire activity, but an actual
implementation may take more (or less) time than anticipated. We notice there
is a tendency for instructors to underestimate the amount of time it will take
students to complete these activities; a general rule is that students usually take
around 10 minutes per page.

(6) Use challenge problems, or create new ones. When students are working at
their own pace, there will always be some who are much quicker than others to
complete the tasks. To keep these students using their time productively, many
of the activities have one or two challenge questions at the end, which usually
involve taking their conclusions one or two steps further. If there isn’t a
challenge question, instructors should be prepared with a question or task for
students that builds in some way off of the tasks they’ve just completed

(7) Don’t provide written solutions. There have been studies that suggest
students will learn and retain more when they are not given written solutions to
tutorials, though it is essential that instructors ensure that students are arriving
at correct answers as they progress through the tasks.! Some students may feel
frustrated by this policy, but we suspect that referring to an answer key while
studying may short circuit an important aspect of the learning process, namely
arriving at a correct answer through their own reasoning, and being able to
justify the correctness of that answer. For our class, activities were posted on a
secure site for students who were unable to attend, and we encouraged them to
speak with us (and each other) outside of class about any questions they might
have. Most importantly, they should ask questions during class time when they
recognize that they’re confused. We do ask that instructors not post
solutions to these activities on the open web under any circumstances, out
of respect for instructors at other institutions, and for maintaining the
integrity of our research.

! See Slezak, et al. PRST-PER 7,020116 (2011); Koenig, et al. PRST-PER 3,010104 (2007).



III. Summary List of Activities

The ordering of topics for these activities follows the presentation in Griffiths
(except for AC circuits, which is sparsely covered in his book). The activities are
usually sufficiently self-contained that they can be used independent of each other,
but they sometimes come in two parts, or use language we expect students to be
familiar with from earlier tasks. We have tried to make note of this in the
summaries when applicable.

The general topics covered in each of the tutorials/activities are listed below, along
with the estimated time it will take for most students to complete them, followed by
a brief summary of the tasks involved, and abbreviated comments on their
implementation (including some common student difficulties). The pdf files in this
package contain the complete notes at the beginning of each activity.

00 - Review Material

A - Divergence and Stokes’ Theorems (~15 min)

B - Gauss’ Law (~15 min)

C - Ampere’s Law (~15 min)
01 - Current Density & Charge Conservation (~15 min)
02 - Ohm’s Law (< 50 min)
03 - Faraday’s Law (< 30 min)
04 - Complex Exponentials (< 50 min)
05 - Complex Impedance (< 50 min)
6A - Maxwell-Ampere Law, Part 1 (~25 min)
6B - Maxwell-Ampere Law, Part 2 (~25 min)
07 - Boundary Conditions (< 50 min)
08 - Energy Flow in a Simple Circuit (< 40 min)
09 - Linear Operators (< 15 min)
10 - EM Wave Equation (~10 min)
11 - Complex Plane Waves (< 40 min)
12 - Reflection & Transmission

A - Normal Incidence (< 50 min)

B - Oblique Incidence (~30 min)
13 - Gauge Invariance (<50 min)
14 - Time-Retarded Potentials (~30 min)
15 - Special Relativity

A - Length Contraction (< 15 min)

B - Inelastic Collision (~10 min)

C - Velocity Transformation (~10 min)



0 - Review Material

These are meant to be short review activities, so the time-estimates are based on
students already having a reasonable familiarity with these topics from the first
semester of the course.

0A - Divergence and Stokes’ Theorems (~15 minutes)
Topics: Divergence theorem, Stokes’ theorem, Gauss’ law, Ampere’s law.

Summary: Students are asked to state the divergence theorem and Stokes’ theorem,
and then work backwards from the integral forms of Gauss’ law and Ampere’s law to
derive these expressions in differential form.

Comments: Many students will have difficulty recalling these two mathematical
theorems from memory, but we encourage them to do this because perpetually
copying out of a book does not demonstrate understanding, and we also believe that
writing them down should be straightforward if they genuinely understand what
they mean. Students are typically asked to derive the integral forms from the
differential forms, and these tasks have them do it in the other direction. The
greatest difficulty for them was in justifying dropping the integration symbols in the
final step of their derivations; students may recognize that two integrals being equal
doesn’t necessarily mean the integrands are equal, yet still make the mistake of
implicitly assuming this.

0B - Gauss’ Law (~15 minutes)
Topics: Gauss’ law, symmetries, electric field from a line charge distribution.

Summary: Students consider the symmetry of a line charge distribution to argue for
why the electric field is entirely in the radial direction, and why a Gaussian cylinder
is needed to solve for the electric field (instead of a sphere or a cube). Students are
then asked to recall Gauss’ law in integral form, find the charge contained in a
section of wire, and solve for the electric field.

Comments: Many students had difficulty articulating their reasoning on the
symmetry questions, and were more inclined to argue in terms of the curl (or closed
line integral) of an electrostatic field being zero. A significant number of students
will believe that the electric field can be solved for using Gauss’ law and a non-
symmetric surface, but that we don’t use such surfaces because the integral would
be too difficult to calculate. All of this indicates that students may have the rote
application of Gauss’ law down, without necessarily having a strong grasp of the
important role of symmetry when calculating fields.



0C - Ampere’s Law (~15 minutes)
Topics: Ampere’s law, symmetries, magnetic field of a long wire.

Summary: Students first argue for why the magnetic field is entirely in the
tangential direction for a straight current-carrying wire. They are then asked to
recall Ampere’s law in integral form, and solve for the magnetic field around the
wire.

Comments: The previous activity on Gauss’ law was more explicit about making
symmetry arguments, and many students may still do this after having completed
that prior activity. Others were more comfortable thinking in terms of there being
no magnetic charges, and the curl (or closed line-integral) of the B-field being zero
where there is no current (enclosed). Instructors should be aware that
understanding the symmetry arguments in applying Gauss’ law doesn’t necessarily
translate to the context of Ampere’s law. A challenge question at the end asks if
Ampere’s law can be used to find the B-field at the center of a circular loop of
current, which inspired a great deal of good discussion/questions.

01 - Current Density & Charge Conservation (~15 minutes)
Topics: Current density, conservation of charge (continuity equation).

Summary: Students first consider a cylindrically symmetric conductor having three
regions of different cross-sectional area. The task here is to rank order the three
regions in terms of several physical quantities in those regions: conductivity, total
current, current density and electric field. The remaining tasks connect the flux of
the current density through a closed surface to the rate of change of the charge
enclosed within the volume.

Comments: These tasks were overall relatively straightforward for students. A
common difficulty that arose had to do with whether the outward flow of current
corresponding to positive flux, and if —dp/dr is a positive quantity. A challenge
question at the end has them convert the integral form of the continuity equation to
its differential form.

02 - Ohm’s Law (< 50 minutes)

Topics: Ohm’s law, continuity equation, boundary conditions on the electric field
inside a conductor

Summary: A steady current flowing through a cone-shaped resistor is used as the
context for addressing the implications of the microscopic version of Ohm’s Law
J=0KE. The initial multiple-choice question orients students to the situation by
having them consider the current density inside the resistive material. They are
then led to make conclusions about the electric field and local charge density inside
the resistor by using Ohm’s law in conjunction with the continuity equation and



Gauss’ law. Students are presented with two possible configurations for the electric
field inside the conductor, and are asked to identify which aspects of those
configurations are allowed, and which are precluded by boundary conditions or
conservation of charge/current. The final activity asks them to interpret a graph of
the correct field and equipotential lines inside the resistor in terms of the concepts
discussed in the previous sections.

Comments: Instructors should be sure that students reconcile their mathematical
conclusions (V-E=0 inside the resistor) and the fact that the field lines are
spreading outwards (which may look to them like a “diverging” field). It is not
essential that the field lines drawn by students on the second page are completely
correct before moving on - we just want them to develop some kind of expectation
for what they ought to look like.

03 - Faraday’s Law (< 30 minutes)
Topics: Faraday’s Law, fields of a solenoid with time-varying current.

Summary: Students first sketch the B-field for a long solenoid, and then consider
whether there is a non-zero electric field anywhere in space when the current in the
solenoid is changing with time. They then use Faraday’s law in integral form to
compute the electric field inside and outside the solenoid, and sketch the induced
field as a function of distance from the center.

Comments: This is a shortened version of a tutorial on EMF from a series created by
the University of Colorado for the first semester of this course. The biggest
conceptual difficulty for students has been with the idea that there is a non-zero
electric field in a region of space where the magnetic field is zero (outside the
solenoid). This can lead to good discussions on the difference between the
differential and integral forms of Faraday’s law. There have been a few students
who were concentrating only on the electric field driving the current in the coil, and
weren'’t thinking there could be an electric field anywhere but inside the wire. This
can lead to interesting discussions about the relative magnitudes of the induced
electric field and the field driving the current, and how this could depend on the
dimensions of the solenoid or the rate of change in the current.

04 - Complex Exponentials (< 50 minutes)

Topics: Complex exponentials as oscillatory functions, representations of complex
numbers, simple AC circuit with resistor.

Summary: The first tasks are meant to help students gain some familiarity with
complex exponentials as oscillatory solutions to differential equations. They first
consider similarities and differences between exponential and trigonometric
functions as solutions to a first-order equation, then similarly for the behavior of
their second-derivatives. Students then perform a few basic tasks involving
different representations of numbers in the complex plane, and draw conclusions



about the direction of rotation over time for an arrow representing a complex
exponential function. The final task applies to a simple AC circuit, where students
must find the magnitude of the current through the resistor at a specific time.

Comments: The first task may seem “simple”, but we were surprised by the amount
of time that some students took to find the first-derivatives of the functions given; a
sign error here and there was common. Students didn’t necessarily have problems
completing the exercises on complex numbers, but seem to require more practice in
order to be comfortable with them; some will be rusty on the rules for multiplying
exponentials functions. Questions about a vector rotating in the complex plane are
given in anticipation of their use in future tutorials (#5-Complex Impedance,
#7-Boundary Conditions, and #12-Reflection and Transmission). We’ve found this
to be a very powerful visualization tool for students when working with oscillatory
functions. Some students have shown a tendency to confuse their use of complex
exponentials in quantum mechanics (multiplying by the complex conjugate to find a
physical quantity) when finding the physical voltage or current represented by a
complex exponential (instead of looking at just one component).

05 - Complex Impedance (< 50 minutes)
Topics: Complex impedance, phasor diagrams, RLC circuits, leading vs. lagging

Summary: These activities are meant to help students gain facility with different
representations of complex functions, and with relating them to the behavior of an
RLC circuit. They begin by plotting voltage (and current) relative to a given current
(or voltage), using a specific value for the complex impedance. They can compare
their answers with trigonometric representations, and resolve difficulties in
deciding whether one function leads or lags the other in time. Students then
determine the total impedance in an RLC circuit in terms of the impedance for each
circuit element, and plot various vectors in a phasor diagram to see how they are
related.

Comments: Students are assumed to have either completed the previous activities
on complex exponentials, or had some kind of introduction to writing complex
numbers in various forms, and the multiplication of complex exponentials (frequent
errors come from not being familiar enough with the rules of exponents). There has
been a great deal of confusion among students concerning whether a voltage is
leading or lagging the current, depending on which representation being used. It
seems to be fairly intuitive for them when looking at the phasor diagrams (as long as
they’re clear on the direction in which the vectors are rotating with time); but the
trigonometric representations can be challenging because, in the graph of a function
that is leading in time, it peaks at a point that is to the physical left of the peak for
the function it leads, and therefore “looks” like it’s actually lagging.



6A - Maxwell-Ampere Law, Part 1 (~25 minutes)

Topics: Maxwell-Ampere law, conservation of charge, E- and B-fields for a charging
capacitor.

Summary: After first converting the Maxwell-Ampere equation from differential to
integral form, students draw conclusions about dp/dt and V- J for a circuit with a

charging capacitor, and compare them with what's predicted by the static form of
Ampere’s law. They are then asked to compare these incorrect predictions with
those for the full Maxwell-Ampere equation, and consider how this is related to the
continuity of field lines for a divergenceless field (the vector field VxB).

Comments: The other activity on this topic (Maxwell-Ampere Part 2, #6B) can also
be done in approximately 25 minutes, so the two parts could potentially be used in
the same class period, or just split between two classes. When deriving the
Maxwell-Ampere law in integral form, 40% of our students incorrectly substituted
O,,ci0sea | €, for the open-surface flux integral of E (an incorrect application of Gauss’
law, where the flux integral is over a closed surface). Many students were confused
about the sign of the net flux of the current density in a region where a capacitor
plate is charging - usually because they were not considering the different
directions the area vector points in around the Gaussian surface; many were
incorrectly thinking that a net charge flowing into the volume would correspond to
positive flux. About 1/4 of our students were confused by the questions regarding
charge conservation, thinking they were instead asking about whether there was an
equal but opposite amount of charge on the two capacitor plates. In a handful of
cases, students initially believed that charge was actually flowing through the space
between the capacitor plates, so that the charge flow was continuous through the
circuit. Students may need to be reminded that the divergence of the curl of a vector
field is always zero.

6B - Maxwell-Ampere Law, Part 2 (~25 minutes)

Topics: Maxwell-Ampere law, Gauss’ law, E- and B-fields for a charging capacitor,
B-field of a current-carrying wire.

Summary: After converting the Maxwell-Ampere equation from differential to
integral form, students find the magnetic field outside a current-carrying wire. They
then consider the electric field between the capacitor plates in terms of the current
in the wires and the charge density on the plates, and derive a formula for the
magnetic field between the plates induced by the changing electric field. They can
then compare the magnitude of the field outside the wire with the field between the
plates, specifically for the case where the radius of the Amperian loop is such that it
encloses all of the electric flux (they are then the same).

Comments: The task of converting Maxwell-Ampere from differential form to
integral form is repeated because students have shown they have real difficulty in
doing this without a textbook in front of them. Instructors may not want to skip this



if Parts 1 & 2 are used in the same day. Many students showed continuing difficulty
with choosing the correct surfaces and loops for applying the integral equations -
specifically with seeing how the two types of integrals are related to each other by
the same surface. An additional task for students could be to explain the final result
in terms of the continuity of field lines for the divergenceless field V x B, which was
also addressed at the end of the previous tutorial.

07 - Boundary Conditions (< 50 minutes)
Topics: Boundary conditions, Maxwell’s equations in integral form.

Summary: These activities guide students through a derivation of the boundary
conditions on the electric and magnetic fields at the interface between vacuum and a
general material. Initial tasks have them consider the charge/current/flux enclosed
by imaginary surfaces. They are then guided to apply Maxwell’s equations to solve
for the conditions on the fields at either side of the boundary.

Comments: Just prior to implementation, we gave our class a brief review of sign
conventions regarding unit vectors and integration surfaces/loops. During the tasks,
many students were still introducing minus signs into the equations from memory
(or intuition), without being able to justify them in terms of the direction of the unit
vectors. Some students are confused by the distinction between a surface current
and the volume current “right at the very edge” of a material, and this is addressed
by having them consider the charge/flux enclosed by surfaces with dimensions that
shrink to zero, in this case just across the surface. Some students got very caught up
on whether the charge/current/flux enclosed is actually zero, or just vanishingly
small - this can be an opportunity to discuss comparisons between finite quantities
and ones that are differentially small. We have purposefully avoided reference to
the auxiliary fields D and H, and there is no distinguishing here between free and
bound charges/currents, because of the added complexity this would involve.

08 - Energy Flow in a Simple Circuit (< 40 minutes)
Topics: Poynting vector, boundary conditions, surface charges, Ohm’s law

Summary: These activities focus on the location and direction of energy flow for a
circuit containing just a battery and a resistor; the initial tasks consider only a
resistive element with a current flowing through it. Students should first conclude
that energy is flowing radially into the resistor (and not along the direction of
current), and that Faraday’s Law requires the electric field to be nonzero outside the
resistor. With no volume charge density inside the resistor, the next conclusion is
that surface charges are responsible for the perpendicular components of the
electric field, which must vary along the length of the resistor for the field to be
conservative. The final conclusion is that energy flows from battery to resistor
through the fields outside the conducting wires, and that energy can (counter-
intuitively) flow opposite the direction of current.
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Comments: The part concerning the parallel components of the electric field
outside the resistor may be more challenging for students who did not complete the
tutorial on boundary conditions. There were still a few students who believed the
volume charge density inside the resistor is non-zero (even though the current is
steady), so this activity gives another opportunity to address this (see #2-Ohm’s
Law). The final conclusion about the location and direction of energy flow was
surprising to most students, and instructors should be sure that students don’t
automatically assume the direction of energy flow is the same through the entire
circuit (from positive to negative terminal, instead of outwards from both). Many
students strongly associate the Poynting vector only with electromagnetic waves, so
this activity provides another context for them.

09 - Linear Operators (< 15 minutes)
Topics: Linear differential operators/equations

Summary: Linear operators are defined, and students must determine which of five
operators are linear. The second part addresses how the components of a complex
solution are themselves solutions to a linear differential equation.

Comments: Students should be sure to check their answers to the first part, since
many will mistakenly believe that option IV is linear if they don’t think too hard
about it. The final task is designed to address potential confusion about how to
translate between complex exponential representations and physical solutions.

10 - EM Wave Equation (~5-10 minutes)
Topics: Wave equation, Maxwell’s equations.

Summary: This is a mostly mathematical exercise, to have students derive the wave
equation for the electric field in a vacuum (where there are no charges or currents).

Comments: The initial task of deriving the wave equation should be completed
within 5-10 minutes, though some may need help in getting started. The final part
asking about static fields has been added since the implementation in our class, but
we expect that there will be some students who are confused about whether this
statement about fields in a vacuum is general. The biggest confusion we’ve seen for
students is how the wave equation for EM fields is usually written as a compact
vector equation, where it can look as though the Laplacian is operating on the entire
vector, instead of each of its components separately.
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11 - Complex Plane Waves (< 40 minutes)
Topics: Plane waves, complex exponentials

Summary: The initial tasks have students identifying the various quantities that go
into a plane wave represented by a complex exponential; the first involves
constructing an expression from the quantities given, while the second analyzes the
quantities for an expression that’s given to them. The remaining tasks involve
deriving explicit expressions for the divergence and curl of a plane wave, and
relating them to Maxwell’s equations in vacuum to determine the orientations of the
electric and magnetic fields relative to the direction of propagation.

Comments: We've noticed that students can have trouble parsing out the various
vectors and scalar quantities that go into a plane wave expressed in complex
exponential notation; the first two tasks give them practice with this. When taking
partial derivatives of the complex exponential, many students had difficulty
correctly applying the chain rule; in particular, they often didn’t see that the dot-

product k-7 is compact notation for k,x + k,y + k,z - sometimes because they were

associating the r-vector only with spherical coordinates. The final page asks
students to make a convincing argument for how the electric field is related to the
magnetic field in terms of a cross-product with the wave vector - several students
were initially trying to calculate the actual cross-product using determinants,
without recognizing that the divergence and curl operations just replace the spatial

derivatives with the corresponding components of k.

12A - Reflection & Transmission (Normal Incidence) (< 50 minutes)
Topics: Reflection and transmission, boundary conditions, complex exponentials.

Summary: Students begin by expressing in exponential notation the boundary
condition on the parallel components of an EM plane wave for normal incidence at
the interface between two media. They can then find the phase shift and amplitude
for the reflected wave by considering representations of the electric field in the
complex plane, first for when the amplitude of the transmitted wave is smaller than
for the incident, and then when the opposite is true. Students should conclude that
the frequencies of all three equations must match for the boundary condition to
hold at all times. A second boundary equation is found by considering the electric
and magnetic fields of the reflected wave. The remaining tasks connect the
amplitude and phase shift of the reflected wave with the refractive indices of the
two materials.

Comments: Warning (!): Portions of this tutorial have not been validated or field-
tested, but we expect students to be able to finish the tasks in less than 50 minutes.
A somewhat different version was used in our class, and the tasks related to
representations in the complex plane are new. We anticipate that this way of
representing the electric field will be more intuitive for seeing how the electric
fields must match up in order for the boundary condition to be satisfied at all times.
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A number of students will have issues with the algebra when solving two equations
for two unknowns on the final page. Checking their answers for the case when the
refractive indices are equal may help them to see whether they have it right.

12B - Reflection & Transmission (Oblique Incidence) (~30 minutes)
Topics: Reflection and transmission, boundary conditions, complex exponentials.

Summary: Students begin by expressing in exponential notation the boundary
condition on the parallel components of the electric field for an EM plane wave at
oblique incidence to the interface between vacuum and a material. After finding the
phase shift for the reflected wave, students should conclude that the components of
k for each of the waves that are parallel to the boundary must match if the equation
is true all along the boundary. The remaining tasks connect the angles of reflection
and transmission to index of refraction for the material.

Comments: Warning (!): Portions of this tutorial have not been validated or field-
tested, but we expect students to be able to finish these tasks in around 30 minutes.
A somewhat different version was used in our class, and the tasks related to
representations in the complex plane are new. The tasks in this tutorial have been
constructed with the assumption that students have completed the tutorial on R&T
for normal incidence (#12A); if not, the more abbreviated tasks herein will be more
challenging, since they are not scaffolded in the same way as in the prior tutorial.
The vectors in the diagrams all have the correct proportions, so it is important that
students can justify their answers on the final page in terms of the reduced wave
speed, and are not simply judging from the diagram.

13 - Gauge Invariance (< 50 minutes)
Topics: Time-dependent potentials and fields, gauge transformations

Summary: Students are first reminded of why EM fields can be written in terms of a
scalar and vector potential. They then show that a gauge transformation in the
vector potential results in an identical magnetic field. Students derive an integral
relationship between E & A, and then find the necessary conditions for transforming
V. A challenge question asks students to derive Poisson’s equation, which would be
used to solve for the scalar function A that transforms the potentials to the Coulomb

gauge.

Comments: The biggest complaint from students has been about not entirely
understanding why we would want to transform the potentials in the first place.
This is hinted at in the final challenge question, where an equation is found for the
function that transforms to the Coulomb gauge, but is not explicitly addressed here.
The first task is a review intended to orient students to the remaining tasks,
reminding them of why we can write the fields in terms of potentials. Many
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students have forgotten that the various statements that can be made about
divergenceless (or irrotational) fields are all equivalent. [See Sect. 1.6.2 in Griffiths]
Some students were unsure about the cross product being a linear operator
(whether the curl of the sum of two vectors is equal to the sum of the curls). There
has been a modest amount of confusion in simply keeping track of primed and
unprimed quantities, with students sometimes mixing them up in their heads.

14 - Time-Retarded Potentials (~30 minutes)
Topics: Retarded time, time-retarded potentials and fields.

Summary: Students explore the concept of retarded time for the case of an infinitely
long wire with a current that abruptly starts at t = 0. They first consider the points
in space where an observer would be aware of there being a non-zero current a
short time after it starts. Students find that the retarded time has different values at
different points in space (relative to an observer at the origin), and decide on the
limits of integration for finding the retarded vector potential at the origin. Challenge
questions at the end have students calculate the electric field at the origin, and check
their answer in the limit of long times.

Comments: Although it is fairly intuitive to students that it takes a finite amount of
time for effects to propagate from a source to an observer, the definition of retarded
time (and how it is used in a calculation) is not. In particular, that the retarded time
is a function of two coordinate variables, and has different values at different points
in space relative to a fixed observer. There is a “time ruler” on a separate handout
that students can use for the questions on the first and second page - they may need
a gentle reminder that it’s easiest to work with whole numbers for the distance from
the origin (some were tempted to estimate the distance for points on the wire that
were even with the tick marks on the x and y-axes). There were some students
confused about what the primed and unprimed variables are each referring to,
which typically shows up in problems involving the separation vector 7 —7". The
tasks in the challenge questions at the end are similar to Example 10.2 in Griffiths,
but a simpler method (involving the fundamental theorem of calculus) is used for
calculating the electric field from the retarded vector potential.

15 - Special Relativity

These are all relatively short activities, meant to address just some of the basics
from special relativity, such as length contraction, 4-momentum, and velocity
addition.



15A - Length Contraction (< 15 minutes)
Topics: Special relativity, Lorentz transformations, length contraction, simultaneity.

Summary: Students first establish the relationships between the times and
locations that go into the length measurement of a moving body. They then derive a
formula for length contraction using the Lorentz transformations, and consider
whether the two position measurements occur at the same time in both frames.

Comments: Although some of the questions may seem trivial to instructors, we
found that a number of students were confused on even the “simple” tasks, which
shows that students may use the Lorentz transformations without understanding
exactly what the different primed and unprimed variables correspond to. Our
students were told beforehand that length measurements involve a simultaneous
determination of the positions of the two ends; still, some were very tentative about
simply saying that the two times are equal, or even that the length is simply the
difference between the two position measurements.

15B - Inelastic Collision (~10 minutes)
Topics: Special relativity, 4-momentum, relativistic collisions.

Summary: Students use conservation of relativistic 4-momentum to find the final
mass of an object resulting from the merging of two colliding particles.

Comments: This activity was straightforward for most students, as long as they
were clear on the following: definition of relativistic 4-momentum; the total
momentum of a system is the linear sum of the momenta of the particles; and that
this quantity is conserved before and after the collision. Some students may
momentarily forget the velocity dependence of ¥ when first working out the total

momentum; the spatial velocities of the two particles cancel, but the ¥ -factor that
appears in the total momentum is not also zero.

15C - Relativistic Velocity Transformation (~10 minutes)
Topics: Special relativity, Lorentz transformations, relativistic addition of velocities.

Summary: Students derive the velocity addition formula using the Lorentz
transformations and the definition for the velocity in two different inertial frames.

Comments: The biggest difficulty for students may be the algebra involved. A
common problem is for students to be confused about the velocity of the frame v,
and the velocity of the particle u in that frame of reference. We have also noticed
some conceptual difficulty for students regarding an event taking place at a single
point in spacetime, and the different coordinate representations of that point in
different inertial frames.
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