TUTORIAL 9:  VECTOR POTENTIAL
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Goals:
1. Understand the origin of the vector potential (mathematically)
2. Be able to visualize and sketch the vector potential
3. Understand and apply a high-level mathematical analogy (between vector potential and Maxwell’s equations)
4. Connect physical representations to the real-world  
5. Calculate vector potential

This tutorial is based on:
· Written by Steven Pollock, Stephanie Chasteen, and Darren Tarshis, with edits by Mike Dubson, Ed Kinney, Rachel Pepper, and Markus Atkinson.

Tutorial Summary: 
Students first summarize the mathematical origin of the vector potential. Then, using a mathematical analogy, and their familiarity with Ampere’s Law, they visualize and sketch A. Finally, they predict A for a surface current, then calculate A (or guess and check a solution).

Reflections on this tutorial: 
While this tutorial appears to be an effective activity for gaining familiarity with vector potential through sketching various situations, it doesn’t really address the “slipperiness” of A.  For example, students see that J and A are in the same direction and start to assume this is always true. However, one student noticed (mathematically) that A can also have other components when he was calculating A in the final part. 
Part 1  		Most students knew where A comes from in question (i).   Only one student was seen attempting to write a formula using a delta function in question (ii). Students are heavily guided in question (iii), and so have few problems here. A few students thought that A would also be a delta function just like J.  Since this is a high-level mathematical analogy, guidance is appropriate.    In question (iv) we had to push each student to say “magnetic flux.”  The sketches in question (iv) are not trivial for students.  A few students again thought that A would just be on the surface of the toroid like J is and they had to be pushed to recognize that A is a dipole field.
Part 2.  	Most students didn’t know what a Tokamak was in question (i), but were able to figure out that it had to be the toroid by a process of elimination.  In question (ii) sketches were in the right direction, but none of the students expected A to increase linearly with z; some were disturbed by this.  Some students get confused by the absolute values and thought that A switched direction as it crossed J. Upon questioning they realized that through symmetry arguments it shouldn’t change direction .  In question (iii), one student realized (mathematically) that although A pointed in the same direction as J in the examples above, it was not necessarily so here.  

Relevant Homework Problems
Vector potential II
A) Griffiths Fig 5.48 (p. 240) is a nice, and handy, "triangle" summarizing the mathematical connections between J, A, and B (like Fig. 2.35 on p. 87) But there's a missing link, he has nothing for the left arrow from B to A. Notice that the equations defining A are really very analogous to the basic Maxwell's equations for B:


So A depends on B in the same way (mathematically) the B depends on J. (Think Biot-Savart.) Use this idea to just write down a formula for A in terms of B to finish off that triangle. 
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B) We know the B-field everywhere inside and outside an infinite solenoid (which can be thought of as either a solenoid with current per length n I or a cylinder with surface current density K = n I ).  Use the basic idea from part (a) to quickly and easily write down the vector potential A in a situation where B looks analogous to that,  i.e. , with C constant. (Sketch this A for us, please)  (You should be able to just see the answer; no nasty integral needed.)  It's kind of cool - think about what's going on here. You have a previously solved problem, where a given J led us to some B. Now we immediately know what A is in a very different physical situation, one where B happens to look like J did in that previous problem.
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 TUTORIAL 10:  VISUALIZING VECTOR POTENTIAL 

Part 1 – Sketching Vector Potential


One of Maxwell’s equations,, made it useful for us to define a scalar potential V, where . Similarly, another one of Maxwell’s equations makes it useful for us to define the vector potential, A.
i. Which of Maxwell equations makes it useful for us to define A? Explain.




ii. What current density J would create the B-field  (uniform within a cylindrical volume) in Figure 1 below? Can you write an explicit mathematical formula for it? 




iii. 
Notice that the equations defining A are mathematically analogous to Maxwell's equations for B:            	(Coulomb gauge)

Sketch B in Figure 2 (note this is a “cylindrical” volume with uniform J). Then, using the mathematical similarities above, sketch A in Figure 3: Side view:
Side view:












Figure 2: Given J, sketch the B field.
Figure 3: Given B, sketch the A field.
s
|B|
s
|A|


iv. 
One way to check your previous answer (conceptually) is using an Ampere’s Law analogy. Ampere’s Law tells you that the J-flux (or Iencl) is equal to . What is a similar relationship between the vector potential and magnetic field?

Try using this “Ampere’s Law analogy” to check your sketch of A.





v. A toroidal wire coil looks like a doughnut wrapped with wire, as shown in Fig. 4. On the “blank” toroid, indicate the direction of J, then sketch the B and A fields.



[image: ]




Part 2 – Calculating Vector Potential
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In a common homework question, you are asked to calculate the magnetic field produced by a uniform surface current: . The answer you may have calculated is: 
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i. Which of the following practical devices can be modeled by the currents or fields shown in figures 2 through 5? 
A.  Tokamak	B.  Solenoid	 C.  Ribbon conductor	     D.  Wire of finite diameter

ii. Sketch your best guess of what A looks like for the uniform surface current. Which components (x, y, or z) does A have (it might help to look at relationship between A, B, and J in the two examples in Part 1)? Which variables (x, y, or z) does A depend on?
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iii. Using your assumption for which components A has, and which variables A depends on, calculate (or guess) what A is. Check your answer by calculating the B field from your vector potential A.










iv. Sketch vector potential A you calculated (or guessed) in part iii.  Does your new sketch of A agree with your guess from part ii? 
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Side view:







� EMBED Equation.3  ���











� EMBED Equation.3  ���















Figure 1
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Figure 5
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