
Physics 3220 – Quantum Mechanics 1 – Fall 2008
Problem Set #13

Due Wednesday, December 10 at 2pm

Problem 13.1: Surveys! (20 points)

Please take the following surveys. You will not be graded for accuracy for these
surveys, you get credit just for participating.

a) http : //www.colorado.edu/sei/surveys/Fall08/Clicker Phys3220 fa08− post.html

b) http : //www.colorado.edu/physics/EducationIssues/baily/SurveyFa08/
MPASFall08Post 3220.htm

Problem 13.2: Projection operators. (20 points)

Consider first a Hilbert space spanned by a basis of orthonormal states {|n〉} labeled by one
discrete quantum number, which we will call n. The states |n〉 are the eigenstates of some
operator Q̂, and n labels the various eigenvalues, Q̂|n〉 = qn|n〉. (For example, Q̂ could be
the Hamiltonian, and n could label the allowed energies.)

For each n, we define the projection operator onto the state |n〉 as

P̂n ≡ |n〉〈n| . (1)

Thus there is a different P̂n for each state |n〉.

a) Demonstrate that P̂n is Hermitian, and that P̂ 2
n = P̂n.

b) What is the result of acting P̂n on an arbitrary state |ψ〉 =
∑

m cm|m〉? Explain why the
name “projection operator” is justified. If there are N distinct values of n, all operators will
be N ×N matrices; what does P̂n look like as such a matrix?

c) In general P̂n|ψ〉 is not normalized; show that the state P̂n|ψ〉/
√
〈ψ|P̂n|ψ〉 is properly

normalized.

d) How are the number 〈ψ|P̂n|ψ〉 and the state P̂n|ψ〉/
√
〈ψ|P̂n|ψ〉 related to the result of

making a measurement of Q? Relate them to the postulates of quantum mechanics.

Now consider a system where the Hilbert space is labeled by more than one quantum number:
the hydrogen atom, with states |n "m〉 labeled by n, " and m. The projection operator
associated to a given value of n now has a sum over all values of the other quantum numbers:

P̂n =
∞∑

!=0

!∑

m=−!

|n "m〉〈n "m| . (2)

1



In the following consider the hydrogen atom wavefunction

|ψ〉 =
1

2

(
|2 1 0〉+

√
2|2 0 0〉+ |1 0 0〉

)
. (3)

e) Consider a measurement of energy. Which values of n might be observed? Write down
the projection operators associated with each possible result, and use them to calculate the
probabilities of each outcome, and the result of the collapse of the wavefunction. Do these
results agree with what you would have expected?

f) If you were to make a measurement of Lz instead, how would you define the projection
operator(s) you need? Repeat the calculation of e) for this case.

Problem 13.3: Spin angular momentum operators. (20 points)

a) Demonstrate that the 2 × 2 spin matrices #̂S = (h̄/2)#σ with #σ the three Pauli matrices,
which operate on spin-1/2 particles, satisfy the correct angular momentum commutation
relations,

[Ŝx, Ŝy] = ih̄Ŝz , [Ŝy, Ŝz] = ih̄Ŝx , [Ŝz, Ŝx] = ih̄Ŝy . (4)

b) Consider the spin-1 case. There are three eigenvectors; let them be called

|s = 1, ms = 1〉 ≡ (1, 0, 0) , |s = 1, ms = 0〉 ≡ (0, 1, 0) , |s = 1, ms = −1〉 ≡ (0, 0, 1) , (5)

and construct the matrices for Ŝx, Ŝy and Ŝz for this spin. Hint: as with the spin-1/2 case,
Ŝz can be deduced from the eigenvectors, and Ŝx and Ŝy can be deduced from the action of
Ŝ+ and Ŝ−,

Ŝ±|s sm〉 = h̄
√

s(s + 1)−ms(ms ± 1) |s sm ± 1〉 . (6)

c) Verify that the matrices you constructed in part b) also satisfy the correct angular mo-
mentum commutation relations.

Problem 13.4: Spin of an electron. (20 points)

An electron is in the spin state

|χ〉 = A
(

3
4i

)
. (7)

a) Determine the normalization constant A.
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b) Calculate the expectation values of Ŝx, Ŝy and Ŝz.

c) An observation of Ŝz is made. What are the possible values that may be observed, and
with what probabilities?

d) Imagine we never made an Ŝz measurement and make an observation of Ŝy instead. What
are the possible values that may be observed, and with what probabilities? To determine
this, find the eigenvalues and eigenvectors of #Sy in general, and then use them in this case.

Problem 13.5: Addition of two spin-1/2s. (Extra credit)

This extra credit problem cancels out previously missed HW points, up to 3% of the HW total grade.

Consider a composite particle composed of a bound state of a spin-1/2 constituent, particle
A, and another spin-1/2 constituent, particle B. (For example, particle A could be a proton
and particle B an electron, and the composite would be a hydrogen atom.) For this problem
we ignore all properties of the particles except their spin. (In the real world you have to deal
with spin and position-space wavefunctions at the same time!)

a) Each of the particles has its own spin operators, ŜA
x , ŜA

y and ŜA
z for particle A, and ŜB

x ,

ŜB
y and ŜB

z for particle B, as well as separate spin quantum numbers, which we will label
sA, mA for particle A and sB, mB for particle B. Including only spin, the basis vectors are
of the form

|sA mA ; sB mB〉 . (8)

(Note that a single state must give a spin configuration for both particles.) The spin operators
for particle A don’t care about the quantum number for particle B, and vice versa. Given this,
write down the action of (ŜA)2, (ŜB)2, ŜA

z and ŜB
z on a state of the form |sA mA ; sB mB〉.

Note: for now, don’t assume that the particles are spin-1/2 yet, so sA and sB are still
arbitrary.

b) Now let the particles both be spin-1/2: sA = sB = 1/2. Because these numbers will never
change, we get bored with writing them over and over, and we’ll just write the states of the
system as

|mA mB〉 . (9)

How many different such states are there for two spin-1/2 particles? List them all. If you
like, you can follow a standard notation and use an up-arrow ↑ to denote m = 1/2 and a
down-arrow ↓ for m = −1/2, so one state would be

|1
2

1

2
〉 or equivalently |↑ ↑ 〉 . (10)

We will take these states to be a basis for our spin-only Hilbert space.
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c) When particles A and B are combined into a composite particle, it is often useful to ask
about the total spin of the composite. In particular, interactions with other particles and
fields will often depend on the total spin, so we would like to determine that.

Define the total spin vector operator,

#̂S =
#̂
SA +

#̂
SB . (11)

Are the states you listed in part b) eigenstates of Ŝz? If yes, give the value of the quantum
number associated to Ŝz for each, which we will just call M , and give a general relation be-
tween M , mA and mB. If no, explain why not and indicate what states would be eigenstates.

d) Once we know the M quantum number of each state, we would also like to know the
total spin quantum number, S (the spin analog of the orbital angular momentum quantum
number "). To do this, we will need the operator Ŝ2, which squaring out equation (11)
becomes

Ŝ2 = (ŜA)2 + (ŜB)2 + 2
#̂
SA · #̂

SB . (12)

First, prove that
#̂
SA · #̂

SB can be expressed as

#̂
SA · #̂

SB =
1

2
(ŜA

+ŜB
− + ŜA

−ŜB
+ ) + ŜA

z ŜB
z , (13)

where the raising and lowering operators for each particle are defined in the usual way.

Now, take the state from part b) with the highest M and act on it with Ŝ2. What is
the value of S for this state? Could you have predicted this from the fact that this was the
largest value of M?

e) How many states are there for a particle of the spin S you found in part d)? Act on
the state with highest M with the lowering operator Ŝ− = ŜA

− + ŜB
− , and use equation (6),

substituting for s and ms either S and M , sA and mA, or sB and mB as the case may be.
What are the S and M values of the state you get, and what is this state in terms of the
original states from part b)?

Repeat the process until you have run out of states for that value of spin S. (Hint: there
aren’t too many more.)

f) Do the states you found in part e) span the whole Hilbert space? If not, how many states
were left out? Explain what these state(s) are in terms of the original states from part b).
What values of M do they have? Assume that all of these remaining state(s) fit into a single
other spin, S ′. What value must S ′ take?

In summary, what values of spin S and S ′ have you found in combining two spin-1/2
states?

You have now written two different bases for your Hilbert space: in terms of the spins of
the individual particles, and in terms of the spins of the composite. Other particles and fields
can interact with either the constituents or the whole bound state, so both are important!
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