
University of Colorado, Department of Physics
PHYS3220, Fall 09, HW#11

due Wed, Nov 4, 2PM at start of class

1. Analytic solution of the harmonic oscillator (Total: 20 pts)
In this problem we go through the analytic solution of the time-independent Schrödinger
equation for the harmonic oscillator
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a) It is convenient to simplify the problem by introducing the two dimensionless variables
ξ =

√
mω
~ x and K = 2E

~ω Show that the time-independent Schrödinger equation can
be written as
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b) Show that in the limit |x| → ∞ the above equation can be approximated as

d2χ(ξ)
dξ2

≈ ξ2χ(ξ)

and an approximate solution is given by

χ(ξ) ≈ A exp(−ξ2/2) + B exp(+ξ2/2)

What is the constraint needed to be sure that χ(ξ) can be normalized? (Don’t actually
try to normalize the function.)

c) The original equation turns out to simplify if we extract the asymptotic (large |x|)
behavior of χ and solve for what’s left. Accordingly, we define H(ξ) by means of

χ(ξ) = H(ξ) exp(−ξ2/2) .

Substitute in the time-independent Schrödinger equation (1) and show that it is
equivalent to the so-called Hermite equation

d2H(ξ)
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dξ
+ (K − 1)H(ξ) = 0

d) The solutions are Hermite polynomials which can be written as series:

H(ξ) =
∞∑

j=0

ajξ
j

where the aj are constants. Show that the result of part c) implies the following
recursion relation for the constants:

aj+2 =
2j + 1−K

(j + 1)(j + 2)
aj



e) Normalizability of the wave function implies that the series can’t go on forever. Thus
to ensure we can normalize our wave function, the series must stop at some point.
Assume that there exists a value n such that an an 6= 0 but an+2 = 0, and find the
resulting constraint on the energy En associated with this wave function.

2. Properties of the harmonic oscillator (Total: 20 pts)
The ladder operators are defined as

â+ =
1√

2~mω
(−ip̂ + mωx̂) and â− =

1√
2~mω

(ip̂ + mωx̂)

a) Use the relations for the Hamiltonian Ĥ = ~ω(â+â− + 1/2) = ~ω(â−â+ − 1/2) and
En = (n + 1/2)~ω to show

â−â+χn = (n + 1)χn and â+â−χn = nχn

where χn is a normalized wave function.

b) Show that for any square-integrable functions f(x) and g(x)

∞∫

−∞
f∗(x)(â±g(x))dx =

∞∫

−∞
(â∓f(x))∗g(x))dx

c) The ladder operators must take one stationary state to the next, times an overall
constant: â+χn = cnχn+1 and â−χn = dnχn−1, where cn and dn are constants to

be determined. Consider the expression
∞∫
−∞

(â+χn)∗(â+χn)dx. Evaluate it using the

results from parts a) and b), to solve for cn. Now consider
∞∫
−∞

(â−χn)∗(â−χn)dx

and do something similar to solve for dn. You should get â+χn =
√

n + 1χn+1 and
â−χn =

√
nχn−1.

3. Expectation values in the harmonic oscillator (Total: 20 pts)

a) Find an expression for the operators x̂ and p̂ in terms of the ladder operators â+ and
â− as well as constants.

b) Calculate < x̂ >, < p̂ >, < x̂2 > and < p̂2 > in the nth stationary state using the
expressions from part a). (Hint: You don’t ever need to write out the functional form
of the χn if you use results from the previous problem.)

c) How must < Ĥ > be related to the expectation values you calculated in the previous
part? Check that this relationship works given what you know < Ĥ > must be for a
stationary state. How much do the kinetic and potential energies each contribute to
the total expectation value < Ĥ >?
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