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Angular Momentum (warm-up for H-atom)

Classically, angular momentum defined as (for a 1-particle system)
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Note: 
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defined w.r.t. an origin of coords.
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 (In QM, the operator corresponding to Lx is 
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    according to prescription of Postulate 2, part 3.)

Classically, torque defined as 
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 (rotational version of 
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If the force is radial (central force), then 
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H-atom:    

In a multi-particle system, total average momentum:
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sum over particles

Internal torques can cause exchange of average momentum among particles, but 
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remains constant.

In classical and quantum mechanics, only 4 things are conserved:

· energy

· linear momentum

· angular momentum

· electric charge

Back to QM.  Define vector operator 
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Recall 
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Claim:  for a central force such as in H-atom
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    (will show this later)

This implies 
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(just like in classical mechanics)

Angular momentum of electron is H-atom is constant, so long as it does not absorb or emit photon.  Throughout present discussion, we ignore interaction of H-atom w/photons.

Will show that for H-atom or for any atom, molecule, solid – any collection of atoms – the angular momentum is quantized in units of ħ.  
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can only  change by integer number of ħ's.
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Claim:  
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(i, j, k cyclic:
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To prove, need two very useful identities: 
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Proof:  
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(Have used 
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I'm dropping the ˆ over operators when no danger of confusion.

Since [Lx, Ly ] ≠ 0, cannot have simultaneous eigenstates of 
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However, 
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 does commute with Lz.
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  Claim:  
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Proof:  
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= 0  (Note cancellations)

[L2, Lz] = 0 => can have simultaneous eigenstates of 
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Looking forward to H-atom:
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We will show that 
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When we solve the TISE Ĥ ψ = E ψ for the H-atom, the natural coordinates to use will be spherical coordinates:  r, θ, φ  (not x, y, z)
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x = r sin θ  cos φ







y = r sin θ  sin φ








z = r cos θ

Just rewriting 
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 in spherical coordinates is gawd-awful.  But separation of variables will give special solutions, energy eigenstates, of form
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The angular part of the solution Y (θ, φ) will turn out to be eigenstates of L2, Lz and will have form completely independent of the potential V( r ).
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Given only [L2, Lz] = 0 and 
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 hermitean we know there must exist simultaneous eigenstates f (which will turn out to be the Y (θ, φ) mentioned above) such that
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(λ will be related to l, and μ will be related to m)

We will show that f will depend on quantum-numbers l, m, so we write it as flm, and that 
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will be determined later.

Notice max eigenvalue of Lz  (= lħ ) is smaller than square root of eigenvalue of 
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So, in QM,   Lz <  | L |      Odd!

Also notice l = 0, m = 0 state has zero angular momentum (L2 = 0, Lz = 0) so, unlike Bohr model, can have electron in state that is "just sitting there" rather than revolving about proton in H-atom.

Proof of boxed ( formulae: (This proof takes 2 ½  pages!)


Define     L+ =  Lx  +  i Ly  =  "raising operator"

                            L-  =  Lx  -  i Ly  =  "lowering operator"

(Note L+†  = L- ,   L-†  = L+ ,   A† = hermitean adjoint of A)

Neither L+ or  L- are hermitean (self-adjoint).

Note  
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=> Consider f:  
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Claim:  g = L+  f  is an eigenfunction of Lz with eigenvalue = (μ + ħ).  So L+ operator raises eigenvalue of Lz by 1 ħ.

Proof:      
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2

2

2

g

f

L

f

L

L

f

L

L

g

L

×

=

×

=

=

=

+

+

+

l

l

)

(

)

(

  (
To prove Lz g = (μ + ħ) g, need to show that [Lz, L+] = ħ L+
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   (
So, operating on f with raising operator L+ raises eigenvalues of LZ by 1ħ but keeps eigenvalue of L2 unchanged.

(Similarly, L- lowers eigenvalue of Lz by 1ħ.)

Operating repeatedly with L+ raises eigenvalue of Lz by ħ each time:  L+  (L+  f  ) has

(μ + 2ħ) etc.

But eigenvalue of Lz cannot increase without limit since 
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There is only one way out.  There must be for a given λ a "top state" ft for which 

L+ ft = 0.

Likewise, there must be for a given λ a "bottom state" fb for which L- fb = 0.


[image: image43]
Write Lz f  =  m ħ ∙ f    , m changes by integers only

          Lz ft  =  ℓ ħ ∙ f t   , ℓ = max value of m 

L2 ft = ?  Want to write L2 in terms of L+, Lz:


[image: image44.wmf][

]

4

3

4

2

1

h

3

2

1

h

3

2

1

z

z

y

x

z

y

x

y

x

y

x

L

L

i

L

L

i

L

L

L

L

iL

L

iL

L

L

L

-

+

-

+

=

+

-

=

+

-

,

)

)(

(

2

2

2

2


=>   
[image: image45.wmf]z

z

L

L

L

L

L

h

  

  

  

  

  

2

2

+

+

=

+

-


 (Also,  
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So, 
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  where ℓ = max m, same λ for all m's.

Repeat for 
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So mmin = - mmax and m changes only in units of 1.

=> m = -ℓ, -ℓ+1,  . . . ℓ-2, ℓ-1, ℓ
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N integer steps

=> 2 ℓ = N ,   ℓ = N / 2  =>     ℓ = 0, 1/2, 1, 3/2,  2, 5/2, . . .

End of proof of (
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We'll see later that there are 2 flavors of angular momentum:
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  mp >> me =>

  proton (nearly)


stationary

Hamiltonian of electron 
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TISE:  
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General Solution to TDSE:  
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Spherical Coordinate System:
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z = r cos θ








x = r sin θ  cos φ







y = r sin θ  sin φ
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  ψ = ψ (r, θ, φ)
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Need 
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Hard Way:  
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Also need 9 derivatives:  
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Easier Way:  Curvilinear coordinates  (See Boas)

path element:
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Spherical coordinates: 
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In Classical Mechanics (CM), KE = p2 /2m  =  KE  = 

              (radial motion KE) + (angular, axial motion KE)
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 (Notice 
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Separation of Variables!  (as usual)

Seek special solution of form:
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Normalization:  ∫ dV | ψ |2 = 
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(Convention:  normalize radial, angular parts individually)

Plug ψ  = R ∙ Y into TISE  =>
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Multiply thru by 
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=>  f(r) = g (θ, φ)  =  constant C  =  ℓ(ℓ + 1)
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Have separated TISE into radial part f( r ) =  ℓ(ℓ + 1), involving V( r ), and angular part   g (θ, φ)  =  ℓ(ℓ + 1) which is independent of V( r ).

=> All problems with spherically symmetric potential (V = V( r )) have exactly same angular part of solution:  Y = Y(θ, φ) called "spherical harmonics".

We'll look at angular part later.  Now, let's examine 

Radial SE:  
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Change of variable:  u (r)  =  r ∙ R(r)
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Notice: identical to 1D TISE:
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except
r: 0  -> ∞ instead of x: - ∞ -> + ∞ and

V(x) replaced with              
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Veff  = "effective potential"

Boundary conditions:

u ( r = ∞ ) = 0 from normalization ∫ dr | u |2 = 1

u ( r = 0 )  = 0,   otherwise 
[image: image85.wmf]r

u

R

=

 blows up at r=0  (subtle!) 

  
[image: image86.wmf]2

  

r

B

r

A

V

r

A

r

V

eff

+

-

=

-

=

,

)

(


[image: image328.wmf]*

ˆ

nm

mn

A

A

A

=

Û

  

hermitian 

 


[image: image329.wmf]y

y

d

0

0

0

  

  

 

          

          

0

x

x

x

x

g

x

=

-

=

)

(

)

(


[image: image330.wmf]y

p

p

e

f

ipx

p

  

  

1

  

          

          

=

F

=

)

(

h


[image: image331.wmf]{

}

{

}

  

  

  

  

 

   

          

          

y

n

n

n

n

n

u

c

u

E

u

=

=

H

ˆ


Full solution of radial SE is very messy, even though it is effectively a 1D problem (different problem for each ℓ )

Power series solution (see text for details).  Solutions depend on 2 quantum numbers: n and ℓ (for each effective potential ℓ = 0, 1, 2, … have a set of solutions labeled by index n.)
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Solutions:  n = 1, 2, 3, …

for given n


      ℓ = 0, 1,  … (n - 1)
            ℓmax = (n – 1)

n = "principal quantum number"

energy eigenvalues depend on n only (it turns out)
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  • same as Bohr model, agrees with experiment!

First few solutions:  Rnℓ (r)
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NOTE:

  • for ℓ = 0 (s states), R (r = 0) ≠ 0  => wavefunction ψ "touches" nucleus.

  • for ℓ ≠ 0 , R (r = 0) = 0  => ψ does not touch nucleus.

ℓ ≠ 0 => electron has angular momentum.  Same as classical behavior, particle with non-zero L cannot pass thru origin 
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Can also see this in QM:  for ℓ ≠ 0, Veff has infinite barrier at origin = > u(r) must decay to zero at r=0 exponentially.
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Back to angular equation:  
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and, using operator algebra, solved for the eigenvalues of L2, Lz.  We found
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where ℓ = 0, ½, 1, 3/2, …





    m  = - ℓ , - ℓ +1 … + ℓ

In the process, we defined raising and lowering operators:
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(cm is some constant)

[image: image339.wmf]
So, if we can find (for a given ℓ) a single eigenstate 
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It's easy to find the φ-dependence; don't need the 
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If we assume (postulate) that ψ is single-valued than  
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    =>  m = 0, ± 1, ± 2, …  But m = - ℓ, … + ℓ 

So for orbital angular momentum, ℓ must be integer only:  ℓ = 0, 1, 2, …  (throw out ½  integer values)
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*     



(algebra!)
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Can deduce 
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Solution:    (un-normalized)

Checks:  Plug back in.
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Now, can get other 
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Normalization from 
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Notice case ℓ = 0 :
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Convention on ± sign:  
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The spherical harmonics form a complete, orthonormal set (since eigenfunctions of hermitean operators)

[image: image357.wmf]l

l

l

l

m

l

f

m

f

L

f

l

l

f

L

m

l

m

l

z

m

l

m

l

  

 

1

  

  

 

1

 

 

       

   

 

  

1

  

  

 

0

  

where

   

1

   

2

3

2

1

2

2

,

,

,

,

,

,

,

)

(

-

+

-

-

=

=

×

=

×

+

=

K

K

h

h


Any function of angles f = f (θ, φ) can be written as linear combo of 
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Likewise:  
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=> H-atom energy eigenstates are 
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n = 1, 2, …  ;  ℓ = 0, 1  …  (n-1) ;  m = -ℓ … + ℓ

Arbitrary (bound) state is
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(c's are any complex constants)

energy of state (n, ℓ, m) depends only on n.

   En = - constant/n2    (states ℓ, m with same n are degenerate)
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Prob (find particle in dV about 
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If ℓ = 0 , ψ = ψ(r) then 
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Prob (find in r → r + dr) = 
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P(r) = radial probability density

Ground state:  
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Notice P(r) very different from ψ(r):
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If ℓ ≠ 0 , ψ = ψ (r, θ, φ) = R(r) Y(θ, φ), then
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Prob (find in r → r + dr) = r2  |R|2  dr
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even if ℓ ≠ 0
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Note: if 

H-atom and emission/absorption of radiation:

If H-atom is in excited state (n = 2, ℓ = 1, m = 0) then it is in energy eigenstate = stationary state.  If atom is isolated, then atom should remain in state ψ210 forever, since stationary state has simple time dependence:
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But, experimentally, we find that H-atom emits photon and de-excites:  ψ210 -> ψ100 in ≈ 10-7 s -> 10-9 s


[image: image124]
The reason that the atom does not remain in stationary state is that it is not truly isolated.  The atom feels a fluctuating EM field due to "vacuum fluctuations".  Quantum Electrodynamics is a relativistic theory of the QM interaction of matter and light.  It predicts that the "vacuum" is not "empty" or "nothing" as previously supposed, but is instead a seething foam of virtual photons and other particles.  These vacuum fluctuations interact with the electron in the H-atom and slightly alter the potential V(r).  So eigenstates of the coulomb potential are not eigenstates of the actual potential:    Vcoulomb + Vvacuum 

Photons possess an intrinsic angular momentum (spin) of 1 ħ, meaning 
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So when an atom absorbs or emits a single photon, its angular momentum must change by 1 ħ, by Conservation of Angular Momentum, so the orbital angular momentum quantum number ℓ must change by 1.

"Selection Rule":  ∆ℓ = ± 1 in any process involving emission or absorption of 1 photon   => allowed transitions are:


[image: image125]
If an H-atom is in state 2s (n = 2, ℓ = 0) then it cannot de-excite to ground state by emission of a photon.  (since this would violate the selection rule).  It can only lose its energy (de-excite) by collision with another atom or via a rare 2-photon process.

[image: image371.wmf]y

y

y

y

E

r

V

mr

L

r

r

r

r

m

   

   

 

   

   

2

   

   

1

2

2

2

2

2

2

=

+

+

÷

ø

ö

ç

è

æ

¶

¶

¶

¶

-

)

(

ˆ

h


[image: image372.wmf]1

  

 

1

 

 

 

 

  

  

1

 

2

2

0

0

2

2

0

=

×

ò

ò

ò

¥

4

4

4

3

4

4

4

2

1

4

3

4

2

1

Y

d

d

R

r

dr

q

j

q

p

p

sin



complete orthonormal set
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If ket's are represented by column vectors, then bra's are represented by the transpose conjugate of column = row, complex conjugate.
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Operators can be represented by matrices:
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no hat on matrix element
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where {| n >} is some complete orthonormal set.

Why is that? Where does that matrix come from?

Consider the operator 
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and 2 state vectors 
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In basis {| n >} , 


[image: image136.wmf]
Now project equation ( onto | m > by acting with bra:


[image: image137.wmf]
But, this is simply the rule for multiplication of matrix ( column.


[image: image138.wmf]
So there you have it, that's why the operator is defined as this matrix, in this basis!

Now, suppose 
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A matrix operator 
[image: image142.wmf]n
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 is diagonal when represented in the basis of its own eigenstates, and the diagonal elements are the eigenvalues.

Notice that in general operators don't commute
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.  Same goes for Matrix Multiplication:  A B ≠ B A
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Claim:  The matrix of a hermitian operator is equal to its transpose conjugate:

Proof:  


[image: image144.wmf]
Similarly, adjoint (or "Hermitian conjugate")  
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Proof:  


[image: image146.wmf]
Of course, it's difficult to do calculations if the matrices and columns are infinite dimensional.  But there are Hilbert subspaces that are finite dimensional.  For instance, in the H-atom, the full space of bound states is spanned by the full set {n, ℓ, m} (= | nℓm>).  The sub-set {n=2, ℓ=1, m = +1, 0, -1} forms a vector space called a subspace. 

Subspace?  In ordinary Euclidean space, any plane is a subspace of the full volume.  

If we consider just the xy components of a vector
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, then we have a perfectly valid 2D vector space, even though the "true" vector is 3D.

Likewise, in Hilbert space, we can restrict our attention to a subspace spanned by a small number of basis states.

Example:  H-atom subspace {n=2, ℓ=1, m = +1, 0, -1}

Basis states are 
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 (can drop n=2, ℓ=1 in label since they are fixed.)
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[image: image151.wmf]
(What about Lx?  Ly?)

Before seeing what all this matrix stuff is good for, let's examine spin because it's very important physically and because it will lead to 2D Hilbert space with simple 2 x 2 matrices.
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bracket or inner-product:
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Which integral you do depends on the configuration space of problem.

Key defining properties of bracket:

· <f | g >*  =  < g | f >  
                                                c = constant



[image: image376.emf]r
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· <f | c • g >   =  c < f | g >  ,   < c • f |  g >   =  c* < f | g >

· <α | ( b| β > + c | γ >)   =  b < α | β >  +   c < α  |  γ >  

Dirac proclaims:  < g | f >  =  < g |  next to  | f >



     bracket  =    "bra"   and    "ket"

Ket | f > represents vector in H-space (Hilbert Space)
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         "ket"           "wavefunction"
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Both ψ and ψ(x) describe same state, but  | ψ > is more general: 
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     position-representation, momentum-rep, energy-rep.

What is a "bra"?  < g | is a new kind of mathematical object, called a "functional".
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input

output
function:
number
number

operator:
function
function

functional:
function
numbe

< g | wants to bind with | f > to produce inner product < g | f >

For every ket | f > there is a corresponding bra < f |.  Like the kets, the bra's form a vector space.

·  | c f >    →  < c f |   =  c* < f |   
                                                








   (?)







· | α f + β g >   →    < α f + β g |   =     α* < f |  +   β* < g |

· < α f + β g | h >   =    α* < f | h >   +   β* < g | h >       (
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Complex number ( bra = another bra

=> bra's form

any linear combo of bra's = another bra

     vector space

The vector space of bras is called a "dual space".  It's the dual of the ket vector space.

[image: image390.wmf]m

m

Y

f

l

l

l

l

å

å

+

-

=

¥

=

=

0

  

  

)

,

(

j

q


[image: image391.wmf]m

n

m

n

m

n

c

l

l

l

y

y

×

=

å

,

,

  

  


[image: image155.wmf]f

A

f

A

ˆ

ˆ

=

 is a ket.  What is the corresponding bra? 
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Definition:  hermitean conjugate or adjoint 
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for all f, g.
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Some properties:

· 
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The adjoint of an operator is analogous to complex conjugate of a complex number:
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The "ket-bra" | f > < g | is an operator.  It turns a ket (function) into another ket (function):


[image: image164.wmf]
Projection Operators
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"Completeness relation"
        
(discrete spectrum case)
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Anywhere there is a vertical bar in the bracket, or a ket or a bra, we can replace the bar with 
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Example:  
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If eigenvalue spectrum is continuous (as for 
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) then must use integral, rather than sum, over states.
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Completeness Relation

(continuous spectrum)

Example:    
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The Measurement Postulates 3 and 4 can be restated in terms of the projection operator:

Starting with state 
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where sum {n} is over any complete set of states, if we measure observable associated with n, then we will find value n0 with probability
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Probability of finding eigenvalue n0 = expectation value of projection operator 
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And as result of measurement state | ψ > collapses to state 
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(apart from normalization)

We can now generalize to case of states described by more than one eigenvalue, such as H-atom.
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If we measure energy (but not also 
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), find n0, then we are projecting onto subspace spanned by {ℓ, m } with some n0.
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   must renormalize

Spin ½

Recall that in the H-atom solution, we showed that the fact that the wavefunction (r) is single-valued requires that the angular momentum quantum # be integer: l  = 0, 1, 2..   However, operator algebra allowed solutions l  = 0, 1/2,  1,  3/2,  2… 

Experiment shows that the electron possesses an intrinsic angular momentum called spin with l = ½.  By convention, we use the letter s instead of  l  for the spin angular momentum quantum number : s = ½.  

The existence of spin is not derivable from non-relativistic QM.  It is not a form of orbital angular momentum; it cannot be derived from 
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 (The electron is a point particle with radius r = 0.)  

Electrons, protons, neutrons, and quarks all possess spin s = ½.   Electrons and quarks are elementary point particles (as far as we can tell) and have no internal structure.  However, protons and neutrons are made of 3 quarks each.  The 3 half-spins of the quarks add to produce a total spin of ½ for the composite particle (in a sense, ((( makes a single ().  Photons have spin 1, mesons have spin 0, the delta-particle has spin 3/2.  The graviton has spin 2.  (Gravitons have not been detected experimentally, so this last statement is a theoretical prediction.)

Spin and Magnetic Moment
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We can detect and measure spin experimentally because the spin of a charged particle is always associated with a magnetic moment.  Classically, a magnetic moment is defined as a vector  associated with a loop of current.  The direction of  is perpendicular to the plane of the current loop (right-hand-rule), and the magnitude is 
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The connection between orbital angular momentum (not spin) and magnetic moment can be seen in the following classical model: Consider a particle with mass m, charge q in circular orbit of radius r, speed v, period T. 
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| angular momentum | = L = p r  =  m v r  ,  so   v r = L/m ,  and 
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So for a classical system, the magnetic moment is proportional to the orbital  angular momentum:  
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The same relation holds in a quantum system. 

In a magnetic field B, the energy of a magnetic moment is given by 
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Writing electron mass as me (to avoid confusion with the magnetic quantum number m) and q = –e  we have 
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is called the Bohr magneton.  The possible energies of the magnetic moment in 
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 is given by   
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For spin angular momentum, it is found experimentally that the associated magnetic 

moment is twice as big as for the orbital case:  
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 (We use S instead of L when referring to spin angular momentum.)  
This can be written 
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.  
The energy of a spin in a field is 
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 (m = (1/2) a fact which has been verified experimentally.  
The existence of spin (s = ½) and the strange factor of 2 in the gyromagnetic ratio (ratio of 
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)  was first deduced from spectrographic evidence by Goudsmit and Uhlenbeck in 1925.


Another, even more direct way to experimentally determine spin is with a Stern-Gerlach device, next page

(This page from QM notes of Prof. Roger Tobin, Physics Dept, Tufts U.)

Stern-Gerlach Experiment  (W. Gerlach & O. Stern, Z. Physik 9, 349-252 (1922).
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 EMBED Equation.3  [image: image202.wmf]   (this is a little crude - see Griffiths Example 4.4 for a better treatment, but this gives the main idea)              
Deflection of atoms in z-direction is proportional to z-component of magnetic moment (z, which in turn is proportional to Lz.  The fact that there are two beams is proof that l = s = ½.  The two beams correspond to m = +1/2 and m = –1/2.  If l = 1, then there would be three beams, corresponding to m = –1, 0, 1.  The separation of the beams is a direct measure of z, which provides proof that 
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The extra factor of 2 in the expression for the magnetic moment of the electron is often called the "g-factor" and the magnetic moment is often written as 
[image: image204.wmf]zB

gm
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.  As mentioned before, this cannot be deduced from non-relativistic QM; it is known from experiment and is inserted "by hand" into the theory.  However, a relativistic version of QM due to Dirac (1928, the "Dirac Equation") predicts the existence of spin (s = ½) and furthermore the theory predicts the value g = 2.  A later, better version of relativistic QM, called Quantum Electrodynamics (QED) predicts that g is a little larger than 2.  The g-factor has been carefully measured with fantastic precision and the latest experiments give  g = 2.0023193043718((76 in the last two places).  Computing g in QED requires computation of ab infinite series of terms that involve progressively more messy integrals, that can only be solved with approximate numerical methods.  The computed value of g is not known quite as precisely as experiment, nevertheless the agreement is good  to about 12 places.  QED is one of our most well-verified theories.

Spin Math

Recall that the angular momentum commutation relations
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were derived from the definition of the orbital angular momentum operator: 
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The spin operator 
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 does not exist in Euclidean space (it doesn't have a position or momentum vector  associated with it), so we cannot derive its commutation relations in a similar way.  Instead we boldly postulate that the same commutation relations hold for spin angular momentum:
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( since s = ½ )
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( since ms = (s ,+s   = (1/2, +1/2 )

Notation:  since s = ½ always, we can drop this quantum number, and specify the eigenstates of L2 , Lz by giving only the ms quantum number.  There are various ways to write this: 
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These states exist in a 2D subset of the full Hilbert Space called spin space. Since these two states are eigenstates of a hermitian operator, they form a complete orthonormal set (within their part of Hilbert space) and any, arbitrary state in spin space can always be written as 
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     (Griffiths' notation is 
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Matrix notation:
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If we were working in the full Hilbert Space of, say, the H-atom problem, then our basis states would be 
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.  Spin is another degree of freedom, so that the full specification of a basis state requires 4 quantum numbers.  (More on the connection between spin and space parts of the state later.)

[Note on language: throughout this section I will use the symbol Sz (and Sx , etc) to refer to both the observable ("the measured value of Sz is 
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") and its associated operator ("the eigenvalue of Sz is 
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The matrix form of S2 and Sz in the 
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basis can be worked out element by element.  (Recall that for any operator 
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Operator equations can be written in matrix form, for instance, 
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We are going ask what happens when we make measurements of Sz , as well as Sx and Sy , (using a Stern-Gerlach apparatus).  Will need to know: What are the matrices for the operators Sx and Sy ?  These are derived from the raising and lowering operators:
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To get the matrix forms of S+ , S( , we need a result from the homework:
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For the case s = ½, the square root factors are always 1 or 0.  For instance,  s = ½, m = (1/2  gives 
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             Notice that S+ , S( are not hermitian.
Using 
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 These are hermitian, of course.

Often written:  
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are called the Pauli spin matrices.

Now let's make some measurements on the state 
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Normalization:   
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Suppose we measure Sz on a system in some state 
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Postulate 2 says that the possible results of this measurement are one of the Sz eigenvalues: 
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Postulate 4 says that, as a result of this measurement, which found 
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, the initial state 
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But suppose we measure Sx ?  (Which we can do by rotating the SG apparatus.)  What will we find?  Answer: one of the eigenvalues of Sx, which we show below are the same as the eigenvalues of Sz : 
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.  (Not surprising, since there is nothing special about the z-axis.)  What is the probability that we find, say, Sx = 
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?  To answer this we need to know the eigenstates of the Sx operator.  Let's call these (so far unknown) eigenstates 
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 ).  How do we find these?  We must solve the eigenvalue equation:
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.  In linear algebra, this last equation is called the characteristic equation.  

This system of linear equations only has a solution if 
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As expected, the eigenvalues of Sx are the same as those of Sz (or Sy).
Now we can plug in each eigenvalue and solve for the eigenstates:
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So we have 
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Now back to our question: Suppose the system in the state 
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, and we measure Sx.  What is the probability that we find, say, Sx = 
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Question for the student: Suppose the initial state is an arbitrary state 
[image: image259.wmf]a

b

æö

c=

ç÷

èø

 and we measure Sx.  What are the probabilities that we find Sx = 
[image: image260.wmf]/2
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h

 and 
[image: image261.wmf]/2
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?

Let's review the strangeness of Quantum Mechanics.

Suppose an electron is in the Sx = 
[image: image262.wmf]/2

+

h

 eigenstate 
[image: image263.wmf](x)
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.   If we ask: What is the value of Sx? Then there is a definite answer: 
[image: image264.wmf]/2

+

h

.  But if we ask: What is the value of Sz , then this is no answer.  The system does not possess a value of Sz.  If we measure Sz, then the act of measurement will produce a definite result and will force the state of the system to collapse into an eigenstate of Sz, but that very act of measurement will destroy the definiteness of the value of Sx.  The system can be in an eigenstate of either Sx or Sz, but not both.
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all other terms


like [y, px] = 0
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1. Orbital 


Ang. Mom.


(integer ℓ only)








2. Spin 


Ang. Mom.


(integer or ½ integer OK)
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The H- atom
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same!
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Notice that energy eigenvalues given by solution to radial equation alone.





Seek bound state


solutions E < 0





E > 0 solutions are unbound states, scattering solutions 
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Degeneracy of nth level is n2 


(2•n2 if you include spin)
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Radial Probability Density
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"solid angle"





P(r) = r2  |R|2
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Eγ  = hf = ∆E
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Matrix Formulation of QM
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Review of Dirac Bra - Ket Notation
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Different 


"representations"


of same 


H=space vector


| ψ >
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Def'n of A†
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|ψ >





u2 = |2> 





u1 = |1> 





|2> <2|ψ>





u1<u1|ψ> = |1> <1|ψ>
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