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Gravity

Newton's Universal Law of Gravitation (first stated by Newton): any two masses m1 and m2 exert an attractive gravitational force on each other according to 
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This applies to all masses, not just big ones.

G   =  universal constant of gravitation   =   6.67 ( 10–11 N m2 / kg2  (G is very small, so it is very difficult to measure!)

Don't confuse G  with g:  "Big G" and "little g" are totally different things.
Newton showed that the force of gravity must act according to this rule in order to produce the observed motions of the planets around the sun, of the moon around the earth, and of projectiles near the earth.  He then had the great insight to realize that this same force acts between all masses.  [That gravity acts between all masses, even small ones, was experimentally verified in 1798 by Cavendish.]
Newton couldn't say why gravity acted this way, only how.  Einstein (1915) General Theory of Relativity, explained why gravity acted like this.

Example: Force of attraction between two humans. 2 people with masses m1 ( m2 ( 70 kg,  distance r = 1 m apart. 
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This is a very tiny force!  It is the weight of a mass of 3.4 (10–5 gram.  A hair weighs 2(10–3 grams – the force of  gravity between two people talking is about 1/60 the weight of a single hair. 
Computation of g
Important fact about the gravitational force from spherical masses: a spherical body exerts a gravitational force on surrounding bodies that is the same as if all the sphere's mass were concentrated at its center.  This is difficult to prove (Newton worried about this for 20 years.)


[image: image3]
We can now compute the acceleration of gravity g !  (Before, g was experimentally determined, and it was a mystery why g was the same for all masses.)


Fgrav  =  m a  =  m g
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(since r = RE is distance from m to center of Earth)


m's cancel !  (     
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If you plug in the numbers for G, ME, and RE, you get g = 9.8 m/s2.

Newton's Theory explains why all objects near the Earth's surface fall with the same acceleration (because the m's cancel in 
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.)  Newton's theory also makes a quantitative prediction for the value of g, which is correct.

Example: g on Planet X.  Planet X has the same mass as earth (MX = ME​) but has ½ the radius (RX = 0.5 RE).  What is gx , the acceleration of gravity on planet X?

Planet X is denser than earth, so expect gx larger than g.
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.    Don't need values of G, ME, and RE!

Method II, set up a ratio:   
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_________________ * __________________

At height h above the surface of the earth, g is less, since we are further from the surface, further from the earth's center. 

r = RE + h  (      


[image: image9.wmf]EE

22

E

GMGM

g

rRh

()

==

+


The space shuttle orbits earth at an altitude of about 200 mi ( 1.6 km/mi ( 320 km.  Earth's radius is RE = 6380 km.  So the space shuttle is only about 5% further from the earth's center than we are.  If r is 5% larger, then r2 is about 10% larger, and
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Astronauts on the shuttle experience almost the same Fgrav as when on earth.  So why do we say the astronauts are weightless??

"Weightless" does not mean "no weight".

"Weightless" means "freefall" means the only force acting is gravity.

If you fall down an airless elevator shaft, you will feel exactly like the astronauts.  You will be weightless, you will be in free-fall.

An astronaut falls toward the earth, as she moves forward, just as a bullet fired horizontally from a gun falls toward earth.
Orbits

Consider a planet like Earth, but with no air.  Fire projectiles horizontally from a mountain top, with faster and faster initial speeds.


The orbit of a satellite around the earth, or of a planet around the sun obeys Kepler's 3 Laws.  

Kepler, German (1571-1630). Before Newton.  Using observational data from Danish astronomer Tycho Brahe ("Bra-hay"),  Kepler discovered that the orbits of the planets obey 3 rules.

KI : A planet's orbit is an ellipse with the Sun at one focus.  

KII : A line drawn from planet P to sun S sweeps out equal areas in equal times.


KIII:  For planets around the sun, the period T and the mean distance r from the sun are related by 
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.  That is for any two planets A and B, 
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.  This means that planets further from the sun (larger r) have longer orbital periods (longer T).
Kepler's Laws were empirical rules, based on observations of the motions of the planets in the sky. Kepler had no theory to explain these rules. 

Newton (1642-1727) started with Kepler's Laws and NII (Fnet = ma) and deduced that 
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.   Newton applied similar reasoning to the motion of the Earth-Moon system (and to an Earth-apple system) and deduced that 
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Newton then made a mental leap, and realized that this law applied to any 2 masses, not just to the Sun-planet, the Earth-moon, and Earth-projectile systems.  

Starting with Fnet = ma and Fgrav = G Mm / r2,  Newton was able to derive Kepler's Laws (and much more!).  Newton could explain the motion of everything!

Derivation of KIII (for special case of circular orbits).  Consider a small mass m in circular orbit about a large mass M, with orbital radius r and period T.  We aim to show that T2 / r3 = const.

Start with NII: Fnet = m a

The only force acting is gravity, and for circular motion a = v2 / r     (

[image: image15.wmf]2

2

2

2

Mm2r

vM

GmGv

rrrT

/

p

/

æö

=Þ==

/

ç÷

/

èø


[recall the v = dist / time = 2r / T ]
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( Deriving this result for elliptical orbits is much harder, but Newton did it. )

An extra result of this calculation is a formula for the speed v of a satellite in circular orbit:
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.    For low-earth orbit (few hundred miles up), this orbital speed is about 7.8 km/s ( 4.7 miles/second.  The Space Shuttle must attain a speed of 4.7 mi/s when it reaches the top of the atmosphere (and it fuel has run out) or else it will fall back to Earth.
Measurement of Big G

The value of G ("big G") was not known until 1798.  In that year, Henry Cavendish (English) measured the very tiny Fgrav between 2 lead spheres, using a device called a torsion balance.

[image: image18.wmf]2

12grav

grav

2

12

mmFr

FG   G = 

rmm

=Þ

         ( If Fgrav, r, and m's known, can compute G.)
Before Cavendish's experiment, g and RE​ were known, so using 
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, one could compute the product G(ME, but G and ME could not be determined separately.  

With Cavendish's measurement of G, one could then compute ME.  Hence, Cavendish "weighed the earth".
Gravitational Potential Energy
Previously, we showed that PEgrav = mgh.  But to derive PE = mgh, we assumed that Fgrav = mg = constant, which is only true near the surface of the Earth.  In general, 
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 (it depends on r).  We now show that for the general case, 
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This is the gravitational potential for two masses, M and m, separated by a distance r.  By convention, the zero of gravitational potential energy is set at r = ∞.  [ I will use the common notation U(r) , instead of PE. ]
Recall the definition of PE:  
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.   Here, we have used the definition of work for the case of 1D motion:  
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[image: image24]
Consider a mass M at the origin and a mass m at position x1, as shown in the diagram.  We compute the work done by the force of gravity as the mass m moves from x = x1 to x = ∞.  
The force F(x) on mass m is in the negative direction, so, indicating direction with a sign, we have 
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.  Here, the work done by gravity is negative, since force and displacement are in opposite directions:   
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From the definition of PE, 
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.  Calling the initial position r (instead of x1),  we have 
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A slight notation change now: r is the radial distance from the origin, so r is always positive  (unlike x which can be positive or negative.)  Plotting U(r) vs. r, we see a “gravitational potential well”.

[image: image29]
Recall that negative potential energy simply means less energy than the zero of energy.

Question: How is PE = mgh a special case of U(r) = (GMm/r ?

[image: image30]
Escape Speed vescape
Throw a rock away from an (airless) planet with a speed v.  If v < vescape , the rock will rise to a maximum height and then fall back down.  If v > vescape , the rock will go to r = ∞ , and will still have some speed left over and be moving away from the planet.  If v = vescape , the rock will have just enough initial KE to escape the planet:  its distance goes to r = ∞  at the same time its speed approaches zero:  v (( 0 as r(( ∞.   

We can use conservation of energy to compute the escape speed vesc  (often called , incorrectly, the "escape velocity" ).  

Initial configuration: r = R (surface of planet), v = vesc.  

Final configuration:  r = ∞ , v = 0.
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Notice that 
[image: image32.wmf]escorbit

v2v

=


If the rock is thrown with speed v > vesc , it will go to r = ∞, and will have some KE left over, vfinal > 0.
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