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Rotational Motion
We are going to consider the motion of a rigid body about a fixed axis of rotation.  


The angle of rotation is measured in radians:      
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Notice that for a given angle , the ratio s/r is independent of the size of the circle.


Example: How many radians in 180o?   Circumference C = 2 r 
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      rads = 180o,  1 rad = 57.3o 
Angle of a rigid object is measured relative to some reference orientation, just like 1D position x is measured relative to some reference position (the origin).


Angle  is the "rotational position".   Like position x in 1D, rotational position  has a sign convention.  Positive angles are CCW (counter-clockwise). 

Definition of angular velocity:   
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In 1D, velocity v has a sign (+ or​ –) depending on direction.  Likewise, for fixed-axis rotation,  has a sign convention, depending on the sense of rotation.


[image: image6]
More generally, when axis not fixed, we define vector angular velocity 
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 with direction = the direction of the axis + "right hand rule".  Curl fingers of right hand around rotation, thumb points in direction of vector.
For rotational motion, there is a relation between tangential velocity v (velocity along the rim) and angular velocity .  
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v  =  r

Definition of angular acceleration :   
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(  like 
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)     Units:  
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  =  rate at which  is changing.

 = constant   (   = 0     (    speed v along rim = constant = r 
Equations for constant :

Recall from Chapter 2:  We defined 
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and then showed that, if a = constant,     
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Now, in Chapter 9, we define 
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So, if  = constant,     
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Same equations, just different symbols.

Example:  Fast spinning wheel with 0 = 50 rad/s   ( 0 = 2f  ( f ( 8 rev/s ).  Apply brake and wheel slows at  = (10 rad/s.  How many revolutions before the wheel stops?  
Use 
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Definition of tangential acceleration atan   =  rate at which speed v along rim is changing


[image: image20.wmf]dr

dvd

a   =r

dtdtdt

w

w

º=

tan

()


(
atan   =   r   

atan is different than the radial or centripetal acceleration   
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ar is due to change in direction of velocity v
atan is due to change in magnitude of velocity, speed v


atan and ar are the tangential and radial components of the acceleration vector a.
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Angular velocity  also sometimes called angular frequency.

Difference between angular velocity  and frequency f:
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T   =  period  =  time for one complete revolution (or cycle or rev)   (
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Units of frequency f  =  rev/s  =  hertz (Hz) .  Units of angular velocity = rad /s = s-1
Example: An old vinyl record disk with radius r = 6 in = 15.2 cm is spinning at 33.3 rpm (revolutions per minute).  

( What is the period T?
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(  period T = 1.80 s

( What is the frequency f ?    f  =  1 / T  =  1 rev / (1.80 s)  =  0.555 Hz

( What is the angular velocity  ?  
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2f20555s349rads

(.)./

-

w=p=p

;


( What is the speed v of a bug hanging on to the rim of the disk? 

 v  =  r  = (15.2 cm)(3.49 s-1)  = 53.0 cm/s
( What is the angular acceleration  of the bug?   = 0 , since  = constant
( What is the magnitude of the acceleration of the bug?  The acceleration has only a radial component ar , since the tangential acceleration atan  =  r   =  0.  

a  =  
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   (about 0.2 g's)
For every quantity in linear (1D translational) motion, there is corresponding quantity in rotational motion:

Translation
(
Rotation
   x

(
   
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The rotational analogue of force is torque.
Force F causes acceleration a    (     
Torque causes angular acceleration 
The torque (pronounced "tork") is a kind of "rotational force".   

magnitude of torque:    
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r = "lever arm" = distance from axis to point of application of force

F( = component of force perpendicular to lever arm

Example: Wheel on a fixed axis:

Notice that only the perpendicular component of the force F will rotate the wheel.  The component of the force parallel to the lever arm (F||)  has no effect on the rotation of the wheel.

If you want to easily rotate an object about an axis, you want a large lever arm r and a large perpendicular force F(:


[image: image37]
Example: Pull on a door handle a distance r = 0.8 m from the hinge with a force of magnitude F = 20 N at an angle  = 30o from the plane of the door, like so:

 = r F( = r F sin  = 
(0.8 m)(20 N)(sin 30o) = 8.0 m(N

[image: image38]
For fixed axis, torque has a sign (+ or ​–) :

Positive torque causes counter-clockwise CCW rotation.

Negative torque causes clockwise (CW) rotation.

If several torques are applied, the net torque causes angular acceleration: 
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Aside: Torque, like force, is a vector quantity.  Torque has a direction.  

Definition of vector torque : 
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Vector Math interlude:  The cross-product of two vectors is a third vector 
[image: image41.wmf]ABC

´=

vv

v

 defined like this:  The magnitude of 
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[image: image45]

To see the relation between torque  and angular acceleration  , consider a mass m at the end of light rod of length r, pivoting on an axis like so:


[image: image46]
Apply a force F( to the mass, keeping the force perpendicular to the lever arm r.

acceleration atan  =  r 
Apply Fnet = m a, along the tangential direction:     F(  =  m atan  =  m r 
Multiply both sides by r  ( to get torque in the game ):   r F(  =  (m r 2) 
Define  "moment of inertia" =  I  =  m r 2  


(

  =  I ( 

( like F  =  m ( a )

Can generalize definition of I:

Definition of moment of inertia of an extended object about an axis of rotation:
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Examples:
( 2 small masses on rods of length r:
  

 I = 2 m r2
( A hoop of total mass M, radius R, with axis through the center, has Ihoop  = M R2  
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     (since ri = R for all i )
In detail:    
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(  A solid disk of mass M, radius R, with axis through the center: 

Idisk  = (1/2) MR2   (need to do integral to prove this)
See Appendix for I’s of various shapes.
Moment of inertia I is "rotational mass".

Big I   (    hard to get rotating 
( like Big M  (  hard to get moving )


If I is big, need a big torque  to produce angular acceleration according to

 net  =  I ( 

( like Fnet = m a )

Example:  Apply a force F to a pulley consisting of solid disk of radius R, mass M.   = ?



[image: image50.wmf](

)

2

1

2

I

2F

RFMR

MR

t=a

=aÞa=


Parallel Axis Theorem    

Relates Icm (axis through center-of-mass) to I  w.r.t. some other axis:      I = Icm + M d2
(See proof in text.)


Example:  Rod of length L, mass M
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Rotational Kinetic Energy

How much KE in a rotating object?  Answer:   
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How much KE in a rolling wheel?
 The formula v = r   is true for a wheel spinning about a fixed axis, where v is speed of points on rim. A similar formulas vCM = r works for a wheel rolling on the ground.  Two very different situations, different v’s:  v = speed of rim vs. vcm = speed of axis.  But v = r   true for both.
To see why same formula works for both, look at situation from the bicyclist's point of view:


Rolling KE: Rolling wheel is simultaneously translating and rotating:
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(See proof in text.)
Conservation of energy problem with rolling motion:
A sphere, a hoop, and a cylinder, each with mass M and radius R, all start from rest at the top of an inclined plane and roll down to the bottom.  Which object reaches the bottom first?

[image: image59]
Apply Conservation of Energy to determine vfinal.  Largest vfinal will be the winner.
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Value of moment of inertia I depends on the shape of the rolling thing:

Idisk = (1/2)M R2 ,  Ihoop = M R2 ,  Isphere = (2 /5)M R2   (Computing coefficient requires integral.)

Let's consider a disk, with I = (1/2)MR2.  For the disk, the rotational KE is
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Notice that final speed does not depend on M or R.  

Let's compare to final speed of a mass M, sliding down the ramp (no rolling, no friction).
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Sliding mass goes faster than rolling disk.  Why?

As the mass descends, PE is converted into KE.  With a rolling object, KEtot = KEtrans + KErot , so some of the PE is converted into KErot  and less energy is left over for KEtrans.  A smaller KEtrans means slower speed (since KEtrans = (1/2) M v2 ).  So rolling object goes slower than sliding object, because with rolling object some of the energy gets "tied up" in rotation, and less is available for translation.

Comparing rolling objects:  Ihoop  >  Idisk  >   Isphere  (  Hoop has biggest KErot  =  (1/2) I 2, ( hoop ends up with smallest KEtrans (  hoop rolls down slowest, sphere rolls down fastest.

Another conservation of rotational energy problem: 

Rod of mass M, length L, one end stationary on ground, starts from rest at angle  and falls.  What is speed v of end of stick, when stick hits ground?
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Plan: Use conservation of energy to get , then  v =  r =  L
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Important point: 

PEgrav = Mgh  where h = height of center-of-mass, independent of the orientation of the stick.
Proof:  
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( Have used definition of center-of-mass:  
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Back to the problem: 
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Use 
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 Done.
The tip of the stick starts at height htip = L sin, but its final speed v is faster than the speed of an object that falls from that height h  [ 
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].  The tip of the stick falls faster than it would in free-fall, because the central part of the rod pulls it down.  This is why tall chimneys always break apart when toppled:
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Let's Review:
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Appendix:
Moments of Inertia for some shapes:
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Another example: a Pulley
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