Vectors

A vector is a mathematical object consisting of a magnitude (size) and a direction.

A vector can be represented graphically by an arrow:

A vector quantity is written in bold (**A**) or with a little arrow overhead (\overline{A}) A (no arrow, not bold) = $|\overline{A}|$ = magnitude of the vector = positive number (magnitudes are positive by definition)

Examples of vector quantities: position, velocity, acceleration, force, electric field.

If two vectors have the same direction and the same magnitude, then they are the <u>same</u> vector

Vector = magnitude + direction (not location)

- In 2D, we need 2 numbers to specify a vector \vec{A} :
 - magnitude A and angle θ or
 - components A_x and A_y (more on components later)

Addition of Vectors

Vector addition is commutative: $\vec{A} + \vec{B} = \vec{B} + \vec{A}$ Graphical addition: "tip-to-tail" or "tail-to-head" method:

Addition by "parallelogram method" (same result as tip-to-tail method)

Can add lots of vectors (like steps in a treasure map: "take 20 steps east, then 15 steps northwest, then...")

Definition of negative of vector (same size, opposite direction):

Definition of multiplication of a vector by a number:

What about multiplication of a vector by a vector? There are two different ways to define multiplication of two vectors: (1) Dot product or scalar product $\vec{A} \cdot \vec{B}$ and (2) Cross product $\vec{A} \times \vec{B}$ These will be defined later.

B

С

Vector subtraction:

Components of a Vector

 $\vec{A} = A_x \hat{x} + A_y \hat{y}$ $(\hat{x} = "x-hat" is the$ *unit vector*, explained below) $A_x = A \cos \theta = x-component = "projection of$ **A**onto x-axis" $A_y = A \sin \theta = y-component = "projection of$ **A**onto y-axis"

Think of the A_x as the "shadow" or "projection" of the vector **A** cast onto the x-axis by a distant light source directly "overhead" in the direction of +y.

Components are numbers, not vectors. They do not have a direction, but they do have a *sign*, a (+) or (-) sign. If the "shadow" onto the x-axis points in the +x direction, then A_x is positive.

Here, B_x is negative, because the x-projection is along the -x direction.

 B_y is positive, because the y-projection is along the +y direction.

Vectors-4

$$A_{x} = A_{x} = A \cos \theta$$

$$\sin \theta = \frac{A_{x}}{A} \Rightarrow A_{x} = A \cos \theta$$

$$\sin \theta = \frac{A_{y}}{A} \Rightarrow A_{y} = A \sin \theta$$

$$A = \sqrt{A_{x}^{2} + A_{y}^{2}} = \tan \theta = \frac{A_{y}}{A_{x}}$$

Magnitude $A = |\vec{A}|$ is positive always, but A_x and A_y can be + or - .

Unit Vectors

A unit vector is a vector with magnitude = 1 (unity). Notation: a unit vector is always written with a caret (^) on top. The unit vectors \hat{x} , \hat{y} , and \hat{z} , also written \hat{i} , \hat{j} , and \hat{k} , are the unit vectors that point along the positive x-direction, y-direction and z-direction, respectively.

Any vector can be written in terms of its components like so:

 $\vec{A} = A_x \hat{i} + A_y \hat{j}$ For instance, if $A_x = 2$, $A_y = -3$, then the vector looks like : $A_y \hat{j} = A_x \hat{i}$

Example of vector math: $\vec{A} = 2\hat{i} - 3\hat{j}$, meaning $A_x = +2$, $A_y = -3$ What is the magnitude A, and the angle α of the vector with the positive x-direction ?

Vector Addition by Components:

Similarly, subtraction by components:

$$\begin{split} \vec{D} \, = \, \vec{A} - \vec{B} \quad \Rightarrow \quad D_x \, = \, A_x - B_x \\ D_y \, = \, A_y - B_y \end{split}$$

Position, Velocity, and Acceleration Vectors

Velocity is a vector quantity; it has a magnitude, called the speed, and a direction, which is the direction of motion. Position is also a vector quantity. Huh? What do we mean by the magnitude and direction of position? How can position have a direction?

In order to specify the position of something, we must give its location in some coordinate system, that is, its location relative to some origin. We define the position vector \mathbf{r} as the vector which stretches from the origin of our coordinate system to the location of the object. The x- and ycomponents of the position vector are simply the x and y coordinates of the position. Notice that that the position vector depends on the coordinate system that we have chosen.

If the object is moving, the position vector is a function of time $\mathbf{r} = \mathbf{r}(t)$. Consider the position vector at two different times t_1 and t_2 , separated by a short time interval $\Delta t = t_2 - t_1$. (Δt is read "delta-t") The position vector is initially \mathbf{r}_1 , and a short time later it is \mathbf{r}_2 . The change in position during the interval Δt is the vector $\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$. Notice that, although \mathbf{r}_1 and \mathbf{r}_2 depend

on the choice of the origin, the change in position $\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$ is independent of choice of origin. Also, notice that change in something = final something – initial something.

In 2D or 3D, we define the velocity vector as $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}$.

As Δt gets smaller and smaller, \mathbf{r}_2 is getting closer and closer to \mathbf{r}_1 , and $\Delta \mathbf{r}$ is becoming tangent to the path of the object. Note that the velocity \mathbf{v} is in the same direction as the infinitesimal $\Delta \mathbf{r}$, since the vector \mathbf{v} is a positive number (1/ Δt) times the vector $\Delta \mathbf{r}$. Therefore, the velocity vector, like the infinitesimal $\Delta \mathbf{r}$, is always tangent to the trajectory of the object.

The vector equation $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}$ has x- and y-components. The component equations are $v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$, $v_y = \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t}$. Any vector equation, like $\vec{A} = \vec{B} + \vec{C}$, is short-hand notation for 2 or 3 component equations: $A_x = B_x + C_x$, $A_y = B_y + C_y$, $A_z = B_z + C_z$

The change in velocity between two times t_1 and t_2 is $\Delta \mathbf{v} = \mathbf{v}_2 - \mathbf{v}_1$ (remember that change is always final minus initial). We define the acceleration vector as $\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t}$. As we

mentioned in the chapter on 1D motion, the direction of the acceleration is the same as the direction of $\Delta \mathbf{v}$. The direction of the acceleration is NOT the direction of the velocity, it is the "direction towards which the velocity is tending", that is, the direction of $\Delta \mathbf{v}$.

We will get more experience thinking about the velocity and acceleration vectors in the next few chapters.

Phys1120 M.Dubson 9/28/2013 © University of Colorado at Boulder