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Conservation of Energy 

 
The important conclusions of this chapter are: 

 

 If a system is isolated and there is no kinetic friction (no non-conservative forces), then 

KE + PE = constant 

(Some texts use the notation K +U = constant) 

 

 If there is friction, then KE + PE + Etherm = constant.   (Etherm = thermal energy) 

 

 Two examples of PE (potential energy)  

   PEgrav =  mgh 

PEelastic =  (1/2)kx
2 

 

At this point, there are two questions you should be wondering about: 

What is the definition of potential energy, PE, and why  PEgrav =  mgh,  PEelastic =  (1/2)kx
2
 ? 

Why is KE+PE = constant, when system isolated and no friction? 

It is not enough to know formulas.  You should know where the formulas come from. 

 

The Big Picture 

We can define energy as the conserved, scalar quantity which obeys The First Law of 

Thermodynamics: W + Q = U.    

In words, “work done + heat added = the change in energy of a system”.   

In this course, we will not consider heat exchanges, so Q = 0, and W = U.   In some special 

cases, we can derive W = U from Newton’s Laws, but the general form W + Q = U cannot be 

derived. We accept it as an experimental fact, and a new law of physics independent of Newton’s 

Laws. 

 

Potential Energy 

So, how do we define potential energy, PE, and get 

PEgrav = mgh ? 

If a force involves no dissipation (no friction), then it can 

be a special type of force called a conservative force.  

i 

f 
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The defining property of a conservative force is that the work done by the force depends only the 

initial and final positions, not on the path taken.  We showed in a previous concept test that 

gravity is a conservative force.  The force of friction is not a conservative force, because the 

work done depends on the path taken: the longer the path the more work is done by friction. 

  

We have only two examples of conservative forces (so far) : 

 gravity (F = mg) 

 the spring force, or elastic force (F = kx) 

 

The normal force is not a conservative force, but it is something of a special case.  The work 

done by the normal force when an object slides along a surface is always zero, so the normal 

force does zero work and we can ignore it, as far as energy problems are concerned. 

 

Associated with every conservative force is a kind of energy called potential energy (PE or U). 

PE is a kind of stored energy. If a configuration of objects has PE, then there is the potential to 

change that PE into other kinds of energy (KE, thermal, light, etc ).  The definition of the PE 

associated with a conservative force involves the work done by that force.  Let’s first review the 

concept of work. 

 

Recall: If I lift a mass m, a distance h, at constant velocity (v = constant), with an external force 

Fext  , such as my hand, then the work done by gravity is the negative of the work done by the 

external force. 

 
So Wext = +mgh  and  Wgrav = mgh .  This is true for the special case v = constant, but it turns 

out that it is always true that Wext = Wgrav , regardless of the motion, so long as the KE at the 

final position is the same as the KE at the intial position.   So, Wext = Wgrav , if the mass starts 

and finishes at rest: vi = vf = 0.  With this example in mind, we are ready to define PE. 

 

 

h 

i 

f 

Fext = mg 

Fgrav = mg 

same magnitudes, 

opposite directions 
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If a force F (such as gravity) is a conservative force, then we define the PE associated with that 

force by  

 

F F extPE W W  

 

In words: the change in potential energy is the negative of the work done by the conservative 

force and it is therefore the positive of the work done by an external force opposing the 

conservative force.   

 

Only changes in PE are physically meaningful.  We are free to set the zero of potential energy 

wherever we want. 

 

grav extPE W mg h . In this formula, the height h is the height above (h+) or below (h) 

the h=0 level.   So h is really f i f

0

h h h h h . 

 So I should really write the formula as  

gravPE mg h . 

 

If I choose to set PEi = 0 at hi = 0, then the formula gravPE mg h  

becomes i i

0 0

PE PE mg(h h )  or simply, gravPE mg h  

 

In the previous chapter, we showed that the work done by an external force to stretch or 

compress a spring by an amount x is  
21

ext 2
W k x .   We therefore have that the elastic potential 

energy contained in a spring is elas extPE W  or  

 
21

elas 2
PE k x  

 

In writing this formula, we have set PEelas = 0 at x = 0 (the unstretched position). 

 

(The normal force never does work, so normal normalPE W 0 .  We can set the PE associated 

with the normal force equal to zero and forget about it.) 

 

Where is potential energy located? 

 

I lift a book of mass m a height h and say that the book has PEgrav = mgh.  But it is not correct to 

say that the PE “in the book”.  The gravitational PE is associated with the system of (book + 

earth + gravitational attraction between book and earth).  The PE is not "in the book" or "in the 

earth"; it is in the book-earth system which includes the “gravitational field” surrounding the 

book and the earth. 
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For the case of elastic potential energy, the PEelas actually is inside the spring.  It is located in the 

increased electrostatic potential energy in the chemical bonds joining the atoms of the spring. 

 

 

Conservation of mechanical energy. 

 

Definition: mechanical energy Emech = KE + PE.  We are now in a position to show that  

Emech = KE + PE = constant (if no friction and system isolated). 

 

Recall the Work-KE Theorem:  Wnet = KE.   Now if there is no friction, the net force involves 

conservative forces only, and Wnet = Wc    (c for conservative force).  But we just defined 

cPE W , so we have net cW W KE PE  or  

KE PE 0 KE PE constant  (if no friction) 

 

 

Example of Conservation of Energy (no friction).  A pendulum consists of a mass m attached 

to a massless string of length L. The pendulum is released from rest a height h above its lowest 

point.  What is the speed of the pendulum mass when it is at height h/2 from the lowest point?  

Assume no dissipation (no friction). 

 

In all Conservation of Energy problems, begin 

by writing  (initial energy) = (final energy) : 

 

E i  = E f        KEi + PEi   = KEf + PEf    

 

    0 + mgh  =  (1/2) mv
2
 + mg(h/2)   

 

(cancel m's and multiply through by 2)      

 

2gh  =  v
2
 + gh     v

2
  =

  
 gh

    
     v g h  

 

Notice:  Using Conservation of Energy, we didn't need to know anything about the details of the 

forces involved and we didn't need to use Fnet = ma.  The Conservation of Energy strategy allows 

us to relate conditions at the beginning to conditions at the end; we don't need to know anything 

about the details of what goes on in between. 

 

 

Suppose there are two conservative forces acting on a system, and no non-conservative forces.  

Then we have net c1 c2F F F    (For instance, there may be gravity and a spring force, but no 

friction.)  Then we have net net c1 c2 c1 c2 c1 c2W F dr F F dr F dr F dr W W               
The Work-KE Theorem then gives net c1 c2 1 2W W W PE PE KE   or 

h 

h/2 

v = ? 

L 

vo = 0 
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1 2 1 2KE PE PE 0 KE PE PE constant (if no friction) 

 

 

Another example of Conservation of Energy: A 

spring-loaded gun fires a dart at an angle  from the 

horizontal.  The dart gun has a spring with spring 

constant k that compresses a distance x.  Assume no 

air resistance. What is the speed of the dart when it 

is at a height h above the initial position?  

 

 

 

E i  = E f        KEi + PEgrav,i + PEelas,i = KEf + PEgrav,f + PEelas,f 

 

  0   +   0   +   (1/2)kx
2
   =   (1/2)mv

2
   +   mgh    +   0  

 

     
2

2m v 2 m g h m
x v 2 g h

k k

  
   

 
 

Notice that the angle never entered into the solution. 

 
What if there is friction? 

 

Up till now, we have assumed that there is no sliding friction in any of these problems.  (Having 

static friction in a problem causes no difficulties, because static friction does not generate 

thermal energy.)  How do we handle sliding friction and the thermal energy generated? 

 

If a system is isolated from external forces so that no external work is done, and if no heat is 

transferred, and if there is no sliding friction so that no thermal energy is generated (that's a lot of 

"if's"), then we can assert that   

 

KE + PE = constant  (isolated system, no thermal energy involved) 

 

If, however, there is sliding friction inside the system, then some of the mechanical energy 

(KE+PE) can be transformed into thermal energy (Etherm).   In this case, we have 

 

KE + PE + Etherm  =  constant  (isolated system) 

 

We now show that the amount of thermal energy generated is the negative of the work done by 

friction: 

    Etherm = – Wfric   

 

Notice that the work done by sliding friction is always negative, since 

sliding friction always exerts a force in the direction opposite the 

motion. Consequently, –Wfric is a positive quantity. 

h  

vf = ? 

yo = 0 

x Ffric 
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When there is sliding friction, the net force usually consists of both conservative forces (like 

gravity) and non-conservative forces (the friction), so Wnet = Wc   + Wnc  .    But Wnet = KE (by 

Work-KE theorem) and Wc = PE, so we have 

 

KE + PE  Wnc  =  0  (isolated system, with friction) 

 

Since the total energy must remain constant in an isolated system, we identify the term  – Wnc  as 

Etherm = – Wfric  , since we want KE + PE + Etherm =  0  (which is the same as KE + PE + 

Etherm =  constant).  

 

 

Some Pictorial Representations 

 

The First Law of Thermodynamics says: 

 

The 1
st
 Law applied to a simple point mass:  the Work-KE theorem. 

 

 

 

 

System  

Surroundings 

Work done on system + 

heat added 

Etot =  

KE+PE+Ethermal +…. 
Work done by system +  

heat removed 

Energy in 
Energy out 

System = 

point mass m  

Surroundings 

Work done on system  

= Wnet  > 0  

Etot = KE 

( point mass has no PE 

and no Ethermal ) 

Work done by system  

= Wnet < 0  

Energy in Energy out 
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The 1
st
 Law applied to a simple mechanical system. 

 

 

KE+PE=total energy graphs 

Suppose a roller coaster of mass m rolls along a track shaped like so: 

 
The shape of the track is a graph of height h vs. horizontal position x.  Since the gravitational 

potential energy of the coaster is PE = mgh, where mg is a constant, a graph of PE vs. x looks the 

same as the graph of h vs. x, but with the vertical axis measuring energy (joules) rather than 

height (meters). Assuming no friction, the total mechanical energy Etot = KE+PE of the roller 

coaster remains constant as it rolls along the track. We can represent this constant energy with a 

horizontal line on our graph of energy vs. x.  From this "energy graph", we can read the KE and 

the PE of the coaster at any point. 

 
 

PE 

x 

PE 

KE 

Etot = KE+PE 

turning 

point 

KE max,  

PE min here 

h 

x 

m 

track 

System = 

mass m + earth + spring 

Surroundings 

Work done on system  
Etot = KE + PEgrav+ PEelas Work done by system  

Energy in Energy out 
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Relation between force and PE. 

 

For this discussion, I'll use the standard notation for potential energy: U = PE.  I want to show 

that (in 1D)  

d U
F

d x
   

(Force is the negative "gradient" of the potential energy.) 

 

Consider a small change in U, U, that occurs when a small change in x, x, is made.  By the 

definition of potential energy  

PEF = U = –WF  = –Fx  
(I can write WF  = Fx even if F varies with x, because x is small and so F  constant.)  If I 

divide through by x, we get, 

lim
x 0

U d U
F

x d x
 


  


  

Here F is the conservative force associated with the potential energy U. This F is not, in general, 

the net force in the problem. 

 

 

Power 
Power = rate at which work is done = rate at which energy is converted from one form to 

another: 

 

W E
P

t t


 

 
 

 

 

units of power = [P] = joules/second = J/s = watts (W) 

 

Every second, a 100 W light bulb converts 100 joules of electric potential energy into heat and 

light.   

 

The power company sells potential energy in units of kilowatt–hours. 

1 kWhr = 1000 J/s  3600 s = 3.610
6
 J 

 

Another popular unit of energy is the Calorie (spelled with a capital C).  A typical candy bar has 

300 Calories of stored chemical energy.  There are two kinds of calories, spelled with a little "c" 

or a big "C": 

 

1 calorie (cal) = "little calorie" = 4.186 J 

1 Calorie = 1000 cal = "big Calorie"  = "food calorie" = 1 kcal = 4186 J   
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The "food Calorie" is the "big Calorie" and it should be spelled with a big C.  (Chemists like to 

use the little calorie, which is defined as the amount of heat required to raise the temp of a gram 

of water by 1
o
 centigrade.) 

Calorie example: Dr. D, who has mass m = 68 kg, eats a 300 Cal candy bar and then climbs 10 

stories (h = 35 meters) to his office on the 10
th

 floor of Gamow Tower. How many Calories has 

he burned? 

 

Work done = PE = mg h = (68 kg) (9.8 m/s
2
) (35 m) = 23300 J  (1Cal/ 4186 J) = 5.6 Cal 

 

A measly 5.6 Cal !?!?  Well, it's not quite that bad. He was also doing a lot of ineffective work 

turning around in the stairwell, flailing his limbs, etc as he climbed, so the total mechanical work 

was more, maybe 10 Cal total.  Also, the human body is not a very efficient machine: only about 

25% of the food Calories burned come out of the body as mechanical work; the rest goes into 

heat. (Dr. D was flushed and panting after his 10-story climb.)  So to produce 10 Cal of work, his 

body burned about 40 Cal –– still not very much. 

 

Moral: You can't burn many Calories instantly by exercising. However, by exercising regularly, 

you build muscles which increases your resting metabolic rate (RMR).  A typical out–of-shape 

male has a RMR of about 70 watts, meaning 70 joules per second burned by just breathing, 

digesting, thinking.  (70 W is about 1400 Cal/day).  By exercising regularly, that RMR can be 

raised to 90 watts (1860 Cal/day).  So by exercising regularly, you burn about an extra 500 Cal 

per day just from your increased resting metabolic rate. "Lose weight while you sleep!"  With the 

increased RMB, you can eat about 1 candy bar per day more than normal and still not gain 

weight.   

 

Power example: The same Dr. D can climb to the 10
th

 floor in 60 seconds (if he pushes!).  What 

is the mechanical power he generates (due to increased PE only, not including heat generated)? 

 

P = PE / t = mg h/ t = (68 kg) (9.8 m/s
2
) (35 m) / (60 s) =  390 W     

 

–– almost enough to light four 100W light bulbs for that 1 minute. 

 

A horse can generate a power of 1 horsepower for several hours.  1 hp = 746 W.  So Dr. D can 

generate about ½ hp for 1 minute (and then he is needs to take a nap).  Horses are pretty 

powerful! 

 

Currently (2013) the power company sells energy at a rate of $0.10 per kilowatthour.  One 

kWhr is enough to light ten 100 W bulbs for 1 hour  –– and you get that for 10 cents! 

  


