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Gravity 
 

Newton's Universal Law of Gravitation (first stated by Newton): any two masses m1 and m2 

exert an attractive gravitational force on each other according to  
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This applies to all masses, not just big ones. 

 

G   =  universal constant of gravitation   =   6.67  10
–11

 N m
2
 / kg

2
  (G is very small, so it is very 

difficult to measure!) 

 

Don't confuse G  with g:  "Big G" and "little g" are totally different things. 

 

Newton showed that the force of gravity must act according to this rule in order to produce the 

observed motions of the planets around the sun, of the moon around the earth, and of projectiles 

near the earth.  He then had the great insight to realize that this same force acts between all 

masses.  [That gravity acts between all masses, even small ones, was experimentally verified in 

1798 by Cavendish.] 

 

Newton couldn't say why gravity acted this way, only how.  Einstein’s (1915) General Theory of 

Relativity explained why gravity acted like this. 

 

Example: Force of attraction between two humans. 2 people with masses m1  m2  70 kg,  

distance r = 1 m apart.  
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This is a very tiny force!  It is the weight of a mass of 3.4 10
–5

 gram.  A hair weighs 210
–3

 

grams – the force of gravity between two people talking is about 1/60 the weight of a single hair.  

 

Computation of g 

 
Important fact about the gravitational force from spherical masses: a spherical body exerts a 

gravitational force on surrounding bodies that is the same as if all of the sphere's mass were 

concentrated at its center.  This is difficult to prove (Newton worried about this for 20 years.) 
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We can now compute the acceleration of gravity g !  (Before this chapter, g was experimentally 

determined, and it was a mystery why g was the same for all masses.) 

 

Fgrav  =  m a  =  m g 
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(since r = RE is distance from m to center of Earth) 

 

m's cancel !       
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If you plug in the numbers for G, ME, and RE, you get g = 9.8 m/s
2
. 

 

Newton's Theory explains why all objects near the Earth's surface fall with the same acceleration 

(because the m's cancel in grav 2

G M m
F ma

R
  .)  Newton's theory also makes a quantitative 

prediction for the value of g, which is correct. 

 

Example: g on Planet X.  Planet X has the same mass as earth (MX = ME) but has ½ the radius 

(RX = 0.5 RE).  What is gx , the acceleration of gravity on planet X? 

 

Planet X is denser than earth, so expect gx larger than g. 

 

Method  I: 
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.    Don't need values of G, ME, and RE! 
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Method II, set up a ratio:    
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_________________ * __________________ 

 

At height h above the surface of the earth, g is less, since we are further from the surface, further 

from the earth's center.  

r = RE + h         
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The space shuttle orbits earth at an altitude of about 200 mi  1.6 km/mi  320 km.  Earth's 

radius is RE = 6380 km.  So the space shuttle is only about 5% further from the earth's center 

than we are.  If r is 5% larger, then r
2
 is about 10% larger, and 
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Astronauts on the shuttle experience almost the same Fgrav as when on earth.  So why do we say 

the astronauts are weightless?? 

 

"Weightless" does not mean "no weight". 

"Weightless" means "freefall" means “the only force acting is gravity”. 

 

If you fall down an airless elevator shaft, you will feel exactly like the astronauts.  You will be 

weightless, you will be in free-fall. 

 

 

An astronaut falls toward 

the earth, as she moves 

forward, just as a bullet 

fired horizontally from a 

gun falls toward earth. 
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Consider a planet like Earth, but with no air.  Fire projectiles horizontally from a mountain top, 

with faster and faster initial speeds. 

 

 

 

The orbit of a satellite around the 

earth, or of a planet around the sun 

obeys Kepler's 3 Laws.   

 

 

Kepler, German (1571-1630). Before 

Newton.  Using observational data 

from Danish astronomer Tycho Brahe 

("Bra-hay"), Kepler discovered that 

the orbits of the planets obey 3 rules. 

 

 

 

 

 

KI : A planet's orbit is an ellipse with the Sun at one focus.   

 

KII : A line drawn from planet P to sun S sweeps out equal 

areas in equal times. 

 

 

 

 

 

 

 

 

KIII:  For planets around the sun, the period T and the mean distance r from the sun are related 

by 
2

3

T
constant

r
 .  That is for any two planets A and B, 

2 2
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r r
 .  This means that 

planets further from the sun (larger r) have longer orbital periods (longer T). 

 

 

Kepler's Laws were empirical rules, based on observations of the motions of the planets in the 

sky. Kepler had no theory to explain these rules.  
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Newton (1642-1727) started with Kepler's Laws and NII (Fnet = ma) and deduced that 

S P

grav 2
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 .   Newton applied similar reasoning to the motion of the Earth-Moon 

system (and to an Earth-apple system) and deduced that 
E

grav 2
Earth-mass m Em
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F G

r( )

 . 

Newton then made a mental leap, and realized that this law applied to any 2 masses, not just to 

the Sun-planet, the Earth-moon, and Earth-projectile systems.   

 

Starting with Fnet = ma and Fgrav = G Mm / r
2
,  Newton was able to derive Kepler's Laws (and 

much more!).  Newton could explain the motion of everything! 

 

Derivation of KIII (for special case of circular orbits).  Consider a small mass m in circular 

orbit about a large mass M, with orbital radius r and period T.  We aim to show that 

T
2
 / r

3
 = const. 

Start with NII: Fnet = m a 

 

The only force acting is gravity, and for circular motion 

a = v
2
 / r      
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[recall the v = dist / time = 2r / T ] 
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So, not only did Newton derive the experimentally observed fact the T
2
/r

3
 = constant, but  his 

theory also explained the value of the constant. (Deriving this result for elliptical orbits is much 

harder, but Newton did it. ) 

 

An extra result of this calculation is a formula for the speed v of a satellite in circular orbit: 

GM
v

r
 .    For low-earth orbit (few hundred miles up), this orbital speed is about 7.8 km/s 

 4.7 miles/second.  The Space Shuttle must attain a speed of 4.7 mi/s when it reaches the top of 

the atmosphere (and it fuel has run out) or else it will fall back to Earth. 
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Measurement of Big G 
 

The value of G ("big G") was not known until 1798.  In that year, Henry Cavendish (English) 

measured the very tiny Fgrav between 2 lead spheres, using a device called a torsion balance. 
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           ( If Fgrav, r, and m's known, can compute G.) 

 

Before Cavendish's experiment, g and RE were known, so using 
E

2

E
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R
 , one could 

compute the product GME, but G and ME could not be determined separately.   

 

With Cavendish's measurement of G, one could then compute ME.  Hence, Cavendish "weighed 

the earth". 

 

Gravitational Potential Energy 
 

Previously, we showed that PEgrav = mgh.  But to derive PE = mgh, we assumed that Fgrav = mg = 

constant, which is only true near the surface of the Earth.  In general, grav 2

M m
F G constant

r
   

(it depends on r).  We now show that for the general case,  
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This is the gravitational potential for two masses, M and m, separated by a distance r.  By 

convention, the zero of gravitational potential energy is set at r = ∞.  [ I will use the common 

notation U(r) , instead of PE. ] 

Recall the definition of PE:  

x2

F F
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PE W F x dx      ( ) .   Here, we have used the definition 

of work for the case of 1D motion:  
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Consider a mass M at the origin and a mass m at position x1, as shown in the diagram.  We 

compute the work done by the force of gravity as the mass m moves from x = x1 to x = ∞.   

The force F(x) on mass m is in the negative direction, so, indicating direction with a sign, we 

have 
2

G M m
F x

x
 ( ) .  Here, the work done by gravity is negative, since force and 

displacement are in opposite directions:    

grav 2
x1 1x1 x1

GMm GMm GMm
W F x dx dx

x x x

 

       ( )  

From the definition of PE, 1 grav

10

GMm
PE U U x= U x W

x
         ( ) ( ) .  Calling the 

initial position r (instead of x1),  we have 
G M m

U r
r

 ( )  .     

 

A slight notation change now: r is the radial distance from the origin, so r is always positive  

(unlike x which can be positive or negative.)  Plotting U(r) vs. r, we see a “gravitational potential 

well”. 

 

Recall that negative potential energy simply means less energy than the zero of energy. 
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Question: How is PE = mgh a special case of U(r) = GMm/r ? 

 

 
 

Escape Speed vescape 

 

Throw a rock away from an (airless) planet with a speed v.  If v < vescape , the rock will rise to a 

maximum height and then fall back down.  If v > vescape , the rock will go to r = ∞ , and will still 

have some speed left over and be moving away from the planet.  If v = vescape , the rock will have 

just enough initial KE to escape the planet:  its distance goes to r = ∞  at the same time its speed 

approaches zero:  v  0 as r ∞.    

 

We can use conservation of energy to compute the escape speed vesc  (often called , incorrectly, 

the "escape velocity" ).   

Initial configuration: r = R (surface of planet), v = vesc.   

Final configuration:  r = ∞ , v = 0. 
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Notice that esc orbitv 2 v  

 

 

If the rock is thrown with speed v > vesc , it will go to r = ∞, and will have some KE left over, 

vfinal > 0. 
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Note that the KE is always positive and, in this case, the PE is always negative.  The total energy 

Etot = KE + PE can be either positive or negative.  If Etot < 0, then we have bound system; the KE 

of the mass m is not large enough for m to escape to infinity, and m remains in elliptical orbit 

about M .  If Etot > 0, then we have an unbound system, and the mass m will escape to infinity 

along a hyperbolic orbit.  If Etot = 0, then the mass m will escape to infinity along a parabolic 

orbit. 
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