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Linear Momentum 
 

Definition: Linear momentum of a mass m moving with velocity v : 

 

p m v      Momentum is a vector.  Direction of p = direction of velocity v. 

 

units [p] = kgm/s  (no special name)    

 

(No one seems to know why we use the symbol p for momentum, except that we couldn't use  

"m" because that was already used for mass.) 

 

Definition: Total momentum of several masses: m1 with velocity v1 , m2 with velocity v2, etc.. 

 

tot i 1 2 1 1 2 2

i

p p p p m v m v        

 

Momentum is an extremely useful concept because total momentum is conserved in a system 

isolated from outside forces. Momentum is especially useful for analyzing collisions between 

particles. 

 

Conservation of Momentum:  You can never create or destroy momentum; all we can do 

is transfer momentum from one object to another.  Therefore, the total momentum of a system of 

masses isolated from external forces (forces from outside the system) is constant in time.    

Similar to Conservation of Energy – always true, no exceptions.  We will give a proof that 

momentum is conserved later. 

 

Two objects, labeled A and B, collide.  v = velocity before collision, v' (v-prime) = velocity after 

collision.  

 

 

Conservation of momentum guarantees that tot A A B B A A B Bp m v m v m v m v       .  

The velocities of all the particles changes in the collision, but the total momentum does not 

change. 

 

collide 

Before After 

mA mA 

mB 
mB vB vB' 

vA vA' 
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Types of collisions 

elastic collision : total KE is conserved (KE before = KE after) 

 

superball on concrete:  KE just before collision = KE just after 

(almost!)  The Initial KE just before collision is converted to 

elastic PE as the ball compresses during the first half of its 

collision with the floor.  But then the elastic PE is converted back into KE as the ball un-

compresses during the second half of its collision with the floor. 

 

inelastic collision :  some KE is lost to thermal energy, sound, etc 

 

perfectly inelastic collision (or totally inelastic collision) : 2 objects collide and stick together 

 

All collisions between macroscopic (large) objects are inelastic – you always dissipate some KE 

in a collision.  However, you can have an elastic collision between atoms:  air molecules are 

always colliding with each other, but do not lose their KE. 

 

1D Collisions 
 

In 1D, we represent direction of vectors p and v with a sign.  (+) = right  (–) = left 

 

 vA = + 2 m/s     moving right 

   vB = – 3 m/s     moving left 

 

Notation Danger!!  Sometimes v v  = speed (always positive).  But in 1D collision problems, 

symbol "v" represents velocity :  v can (+) or (–). 

 

1D collision example:  2 objects, A and B, collide and stick together (a perfectly inelastic 

collision).  Object A has initial velocity v, object B is initially at rest.  What is the final velocity 

v' of the stuck-together masses? 

 

 

 

 

 

tot ,before tot , after

A A B B A B

v 0

A A B

A

A B

p p

m v m v (m m ) v

m v (m m ) v

m
v v

m m



  

 

 
   

 

 

Notice that v
'
 < v, since mA/(mA+mB) < 1. 

(+) 

Before After 

mA 

mA+mB mB (at rest) 

v 
v

' 
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Another 1D collision example (recoil of a gun).  A gun of mass M fires a bullet of mass m with 

velocity vb .  What is the recoil velocity vG of the gun? 

 

 
 

tot (before) tot (after)

G b

G b

G b

p 0 p

0 M v m v

M v m v

m
v v

M

 

 

 

 
   

 

 

 

vb = 500 m/s,  m = 10 gram = 0.01 kg,   M = 3 kg     G

0 010
v 500 1 7 m/s

3

.
.      

Quite a kick!  This is how rockets work!  Rocket fuel is thrown out the back of the rocket, 

causing the rocket to recoil forward.  There is NO WAY to make a rocket go forward in space 

except by throwing mass out the back. Any other means of propulsion would violate 

Conservation of Momentum.  (Sorry Star Trek fans, warp drive is impossible.) 

 

Incidentally, why is the barrel of a rifle so long?   

Answer: v = at   long barrel, more time to accelerate, bigger v 

 

Impulse 
To prove that momentum is conserved in collisions, we need the concept of impulse, which 

relates force to changes in momentum. 

 

Newton never wrote Fnet = m a.  He wrote an equivalent relation using momentum: 

 

 net

d p
F

d t
           Net force is the rate of change of momentum. 

 

Let's check that this is the same as Fnet = m a.  

p m v, p m v     (assuming m = constant)      net

p m v
F ma

t t

 
  
 

 

 

In the special case that a constant net force is applied during a time interval t , we have 

Before 
After 

vb > 0 
m 

M 

ptot = 0  (both at rest) 

vG < 0 
M 

m 
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net

p
F

t





 or netp F t   .   If the force varies over time, then the correct expression is 

f

net net,AVG

i

p F d t F t     

 

Definition: impulse J = net force  time  netJ F t    ( Fnet = constant during time interval t ) 

In general,    

f

net net,avg

i

J F d t F t   .   So we have 

 

net,avgp J F t     

 

 

To change the momentum of an object, you must apply a net force for a time interval. 

 

The term "impulse" is usually reserved for situations in which a BIG force acts for a short time to 

cause a rapid change in momentum.  Like a bat hitting a baseball: 

 

 
 

f i f i f iJ p p p m v m v m v v m v         ( )  

 

Example:   

mbaseball = 0.30 kg ,  vi = – 42 m/s ,  vf = +80 m/s , duration of bat/ball collision = t = 0.010 s 

 

What is the impulse?  And what is the size of the average force exerted by the bat on the ball? 

 

+x     right = + direction 

Before swing: 

baseball 

m 

vi 

(vi < 0) 

It's a hit! 

m 

vf 

(vf > 0) 
After swing: 

Pow! 

vi vf 

v 

pi pf 

J = p 
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J = m(vf – vi) = (0.30 kg)(80 m/s – (– 42 m/s)) = 0.30(122)  +37 kgm/s  (Impulse is to the 

right.) 

 

37 kg m/sp
F 3700 N 800 lbs

t 0 010 s.


   


    Bat exerts a BIG force for a short time. 

 

Proof that momentum is conserved 
Now finally, we are ready for the proof that momentum is conserved in collisions.  We are going 

to show that Newton's 3
rd

 Law guarantees that   

 

(total momentum before collision)  =  (total momentum after collision) 

 

We will show that when two objects (A and B) collide, the total momentum tot A Bp p p   

remains constant because A Bp p    ; that is, the change in momentum of object A is exactly 

the opposite the change in momentum of object B. Since the change of one is the opposite of the 

change of the other, the total change is zero:  tot A B A Ap p p p p 0          .   

 

Here's the proof: When two objects collide, each exerts a force on the other.  NIII says that each 

feels the same-sized force F, but in opposite directions.  Each object experiences the same-sized 

force for the same duration t.   So each object  receives the same-sized impulse 

J F t p      but with opposite directions.  Done. 

 

1D collision:  

pA = – F t <  0   pB = + F t >  0 

 

pA +pB  =  0    pA +pB)  =  0      pA +pB  =  constant 

 

The total momentum is constant, if all forces acting are internal to system; that is, if the system 

is isolated from outside forces.  If there are forces from outside the system, then the system's 

total momentum can change.  But any momentum change of the system must be due to transfer 

of momentum between the system and its surroundings. 

 

 

Before: 

During: 

mA 

vA 
mB 

vB 

F F 

(Each feels same magnitude F, for same duration t.) 
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Example of Conservation of Energy and Momentum: The Ballistic Pendulum.  The ballistic 

pendulum is a simple device which can accurately measure the speed of a bullet.  It consists of a 

block of wood hanging from some strings.  When a bullet is fired into the block, the kick from 

the bullet causes the block to swing upward. From the height of the swing, the speed of the bullet 

can be determined. 

 

The Situation: bullet of mass m, with unknown initial velocity 

v1 , is fired into a large wooden block of mass M, hanging at 

rest from strings. 

 

pot = m v1 

 

 

 

Immediately after collision, bullet is buried in block, but block has not 

yet had time to move.  The impulse from bullet gives block+bullet a 

velocity v2. 

 

Momentum conservation   mv1 = (M + m)v2           (1) 

 

 

Momentum is conserved, but KE is not.  Most of the bullet's initial KE has been converted to 

thermal energy: bullet and block get hot.  Some KE is left over:  
21

22
KE (m M) v   

 

Block+bullet rise to max height h, which is measured. 

 

Conservation of energy  

 

i i f f

0 0

21
22

KE PE KE PE

(M m) v (M m)g h (2)

  

  
 

 

Now have 2 equations [(1) and (2)] in two unknowns (v1 and v2).  So you can solve for the 

velocity of the bullet v1 terms of the knowns (m, M, g, and h).  I’ll let you do the algebra. 

 

Elastic Collisions 

 
In a collision between two masses, momentum is ALWAYS conserved (when there are no 

outside forces).  So, for an isolated system, we can always write:  

Before: 

After: 

mA vA mB 
vB 

mB

N 

vB' 

mA 

vA' 

m 

M (at rest) 

v1 

M+m 

v2 

h 
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tot A A B B A A B Bp m v m v m v m v      

 

IF the collision is elastic, then KE is also conserved, so we can also write: 

 
2 2 2 21 1 1 1

Before After A A B B A A B B2 2 2 2
KE KE , m v m v m v m v      

 

If the initial conditions (masses and initial velocities) are known, and we seek the final velocities, 

then we have two equations (Conserv of p, Conserv of KE) in two unknowns (vA'  and vB' ), and 

it is possible to solve.  But the algebra gets very messy, because of the squared terms in the KE 

equation. 

 

It turns out that when the collision is elastic, the relative velocity of the two objects (velocity of 

one relative to the other) is reversed, according to the equation: 

 

   B A B Av v v v      (elastic collision) 

 

Because this equation has no squared terms, it is much easier to use than the KE conservation 

equation.  This equation says that the relative velocity of approach before the collision is the 

negative of the relative velocity after the collision. The proof of this equation is in the Appendix.   

 

Example of elastic collision in 1D:  A mass mA = 10m with initial velocity vA collides head-on 

with a mass mB = m that is at rest.  What are the final velocities, vA' and vB', of the two masses? 

 
Here vB (initial velocity of object B) is zero, so Conservation of Momentum gives: 

 

A A B10 m v 10 m v m v          (m's cancel)       A A B10 v 10 v v      (*) 

 

Because the collision is elastic (meaning KE is conserved), we can write 

 

   B A B A B A B A B A Av v v v , (v 0) v v v , v v v                

 

Substitution into (*) gives  

A A A A A A A A

9
10 v 10 v v v , 9 v 11 v , v v

11
         

Before: 

After: 

10m vA m 

(rest) 

10m 
vA' m vB' 
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B A A A A A

11 9 20
v v v v v v

11 11 11
       

 

Notice that the big mass is slowed by the collision (makes sense) and the little mass is shot 

forward with a velocity that is larger than the initial velocity of the big mass. 

 

 

Center of mass   

The formula 
2

net 2

d v d r
F ma m m

d t d t
     applies to a point particle.  What about an extended 

object, made of many particles?  We can regard any object as a collection of N particles. 

 
N

i

i=1

Total mass =  M  = m  

 

Definition: center of mass 

i i

i

m r

R   
M




 

(Wolfson uses notation rcm, but I will use capital letters for 

center-of-mass) 

 

This is easier remember if you think of the definition like this:    i i

i

M R   m r   

 

Example:  Where is c.m. of this 4 mass system?  The masses, 

labeled 1, 2, 3, 4, form a square of edge length d.  The four 

masses are m, m, m, and 3m. 

 

 

 

1 1 2 2 3 3 4 4

1
X m x m x m x m x

M

1 4
m 0 m 0 m d 3m d d 0.67d

6m 6

   

         

 

 

 

 

1 1 2 2 3 3 4 4

1
Y m y m y m y m y

M

1 1
m 0 m d md 3m 0 d 0.33d

6m 3

   

        

  

 

 Notice that the c.m. is closer to the heavy corner in the lower right.  Roughly speaking, the c.m. 

is the "balance point". 

 

mi ri 

x 

y 

m 

x 

y 

m m 

3m 

d 

d 

1 

2 3 

4 

c.m. 
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We will now show that, for an extended object: 
2

net 2

d R
F M mA , where A acceleration of c.m.

d t
    

We define the velocity of the c.m. V (capital V for center-of-mass velocity) and the acceleration 

of the c.m. A  like so: 

 

i
i i i

i i

d r
m m v

d R d t
V   

d t M M
  

 
   ,     

i
i i i

i i

d v
m m a

d V d t
A   

d t M M
  

 
 

 

 

The center-of-mass has x-, y-, and z-components:  

ˆ ˆ ˆR  = Xi Y j Zk   , where 
i i

i

m x

X  = 
M


,   

i i

i

m y

Y  = 
M


  , etc   

 

and likewise for the velocity and acceleration  

 

x y z
ˆ ˆ ˆV  = V i V j V k  , where 

i xi

i
x

m v

V   = 
M


 , etc. 

 

 

The total force or net force on an extended object is the vector sum of all the forces on all the 

particles.  Some of the forces are external forces, from outside the object (for example, gravity) , 

and some of the forces are internal forces, acting between particles in the object.  The internal 

forces all cancel in pairs, because of NIII.  

 

net j ext int ext

j
external forces 0

internal forces
cancel in pairs

F F F F F



        

 

We can also write the net force on an object as the vector sum of the net forces on each particle: 

 

net net,i i i

i i

F F m a   . 

Now using our definition of acceleration of c.m., i i

i

M A m a  and the fact that 

net extF F   , we have   net extF F MA  . 

 

The center-of-mass moves like a point particle even if the particles are not glued together.  

Example: a projectile bomb is launched, and explodes in flight.  
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Now have alternative way of showing that total momentum of many-particle system is 

conserved, if the system is isolated from external forces. 

 

Recall tot i i i

i i

P p m v   .  Can show that tot c.m.P MV  : 

 

cm

i
tot i i i cm

i i

M R

d r d d R
P m m r M M V

d t d t d t



 
    

 
   

Now  ext

d V d d P
F M A M M V

d t d t d t
     

 

So, if no external forces are acting, i

i

d P
0 P constant p constant

d t
    

c.m. of pieces moves 

as if bomb had not exploded. 
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Appendix.  Proof of       B A B Av v v v         for elastic collisions. 

 

Working in 1D, so we can drop the "vector arrow" notation.  

Conservation of momentum gives 

 

A A B B A A B Bm v m v m v m v (1)     

 

Conservation of KE gives 

 
2 2 2 2

A A B B A A B Bm v m v m v m v ( 2 )      [We've cancelled out all the (1/2) factors.] 

 

We can rearrange these equations to put all the mA terms on one side and all the mB terms on the 

other: 

 

(1)          A A A B B Bm (v v ) m (v v ) ( 3 )     

 

(2)        

2 2 2 2

A A A B B B

A A A A A B B B B B

m (v v ) m (v v )

m (v v )(v v ) m (v v )(v v ) (4 )

    


        

 

 

[ We have used the identity (x
2
 – y

2
) = (x + y) (x - y). ] 

 

If we divide equation (4) by equation (3), we get: 

 

A A A A A B B B B B

A A A B B B

m (v v )(v v ) m (v v )(v v )
(4) (3)

m (v v ) m (v v )

      
  

  
 

 

Notice that almost everything cancels out in this equation, leaving only  

 

A A B B(v v ) (v v )      , which is the same as   B A B A(v v ) (v v )     .  Done. 

 

 

 


