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Simple Harmonic Motion 
 

A pendulum, a mass on a spring, and many other kinds of oscillators exhibit a special 

kind of oscillatory motion called Simple Harmonic Motion (SHM).   

 

SHM occurs whenever : 

i. there is a restoring force proportional to the displacement from equilibrium: F  x 

ii. the potential energy is proportional to the square of the displacement: PE  x
2
 

iii. the period T or frequency f = 1 / T is independent of the amplitude of the motion. 

iv. the position x, the velocity v, and the acceleration a are all sinusoidal in time. 

 
(Sinusoidal means sine, cosine, or anything in between.) 

As we will see, any one of these four properties guarantees the other three.  If one of 

these 4 things is true, then the oscillator is a simple harmonic oscillator and all 4 things 

must be true. 

 

Not every kind of oscillation is SHM.  For instance, a perfectly elastic ball bouncing up 

and down on a floor: the ball's position (height) is oscillating up and down, but none of 

the 4 conditions above is satisfied, so this is not an example of SHM.   

 

A mass on a spring is the simplest kind of Simple Harmonic Oscillator. 

 

 

Hooke's Law:  Fspring = – k x 

 

(–) sign because direction of Fspring is 

opposite to the direction of displacement 

vector x  (bold font indicates vector) 

  

k = spring constant = stiffness, 

units [k] = N / m 

 

Big k = stiff spring 

 

 

Definition: amplitude A  =  |xmax|  =  |xmin|.  

 

Mass oscillates between extreme positions x = +A and x = –A   
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Notice that Hooke's Law (F =  kx) is condition  i : restoring force proportional to the 

displacement from equilibrium. We showed previously (Work and Energy Chapter) that  

for a spring obeying Hooke's Law, the potential energy is U  = (1/2)kx
2
 , which is 

condition ii.  Also, in the chapter on Conservation of Energy, we showed that F = 

dU/dx, from which it follows that condition ii implies condition i.  Thus, Hooke's Law 

and quadratic PE (U  x
2
) are equivalent. 

 

We now show that Hooke's Law guarantees conditions iii (period independent of 

amplitude) and iv (sinusoidal motion).   

 

We begin by deriving the differential equation for SHM.  A differential equation is 

simply an equation containing a derivative.  Since the motion is 1D, we can drop the 

vector arrows and use sign to indicate direction. 

 

net net

2
2 2

2

F ma and F k x ma k x

d x k
a dv / dt d x / dt x

d t m

    

      

The constants k and m and both positive, so the k/m is always positive, always.  For 

notational convenience, we write 2k / m   .  (The square on the  reminds us that 
2
 is 

always positive.)  The differential equation becomes 
2

2

2

d x
x

d t
    (equation of SHM) 

This is the differential equation for SHM.  We seek a solution x = x(t) to this equation, a 

function x = x(t) whose second time derivative is the function x(t) multiplied by a 

negative constant (
2
 = k/m).  The way you solve differential equations is the same 

way you solve integrals: you guess the solution and then check that the solution works. 

 

Based on observation, we guess a sinusoidal solution:   x(t) Acos t   , 

where A,  are any constants and (as we'll show)  
k

m
  . 

A = amplitude:  x oscillates between +A and –A 

 = phase constant (more on this later) 

Danger:  t and have units of radians (not degrees).  So set your calculators to radians 

when using this formula.   

 

Just as with circular motion, the angular frequency  for SHM is related to the period by  

2
2 f

T


       ,  T = period.   
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(What does SHM have to do with circular motion?  We'll see later.) 

 

Let's check that  x(t) Acos t    is a solution of the SHM equation. 

 

Taking the first derivative dx/dt , we get  
dx

v(t) A sin t
dt

      .    

Here, we've used the Chain Rule: 
 

d d cos( ) d
cos t , ( t )

dt d d t

sin sin( t )

 
      



      

 

 

Taking a second derivative, we get  

 

  

 

2
2

2

2
2

2

2
2

2

d x dv d
a(t) A sin t A cos( t )

dt dt dt

d x
A cos( t )

dt

d x
x

dt

           

   

 

 

 

This is the SHM equation, with 
2 k k

,
m m

     


We have shown that our assumed solution is indeed a solution of the SHM equation.  (I 

leave to the mathematicians to show that this solution is unique. Physicists seldom worry 

about that kind of thing, since we know that nature usually provides only one solution for 

physical systems, such as masses on springs.)    

 

We have also shown condition iv:  x, v, and a are all sinusoidal functions of time: 

 

 

2

x(t) A cos t

v(t) A sin( t )

a(t) A cos( t )

  

    

    

 

The period T is given by 
k 2 m

T 2
m T k


      .  We see that T does not 

depend on the amplitude A (condition iii). 

 

Let's first try to make sense of k / m  :  big  means small T which means rapid 

oscillations.  According to the formula, we get a big when k is big and m is small.  This 

makes sense: a big k (stiff spring) and a small mass m will indeed produce very rapid 

oscillations and a big .  
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A closer look at x(t) = A cos(t+)  

 

Let's review the sine and cosine functions and their relation to the unit circle.  We often 

define the sine and cosine functions this way: 

 

adj
cos

hyp
   

 

opp
sin

hyp
   

 

This way of defining sine and cosine is correct but incomplete.  It is hard to see from this 

definition how to get the sine or cosine of an angle greater than 90
o
. 

 

A more complete way of defining sine and cosine, a 

way that gives the value of the sine and cosine for 

any angle, is this: Draw a unit circle (a circle of 

radius r = 1) centered on the origin of the x-y axes 

as shown: 

 

Define sine and cosine as 

adj x
cos x

hyp 1
     

opp y
sin y

hyp 1
     

 

This way of defining sin and cos allows us to compute the sin or cos of any angle at all.   

 

For instance, suppose the angle is  = 210
o
.  Then the 

diagram looks like this:   

 

The point on the unit circle is in the third quadrant, where 

both x and y are negative.  So both cos = x and 

sin = y are negative 

 

 

 

 

 

For any angle , even angles bigger than 360
o
 (more than once around the circle), we can 

always compute sin and cos.  When we plot sin and cos vs angle , we get functions that 

oscillate between +1 and –1 like so: 

 



opposite 

adjacent 

hypotenuse 

x 

y 



r = 

1 

point (x, y) 

x 

y 



1 

point (x, y) 
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We will almost always measure angle  in radians. Once around the circle is 2 radians, 

so sine and cosine functions are periodic and repeat every time  increases by 2 rad.  

The sine and cosine functions have exactly the same shape, except that sin is shifted to 

the right compared to cos by .  Both these functions are called sinusoidal 

functions. 

 

 
The function cos() can be made to be anything in between cos() and sin() by 

adjusting the size of the phase between 0 and 2.   

 

 cos , ( 0) sin cos , / 2
2

 
          

 
 

 

The function cos(t + ) oscillates between +1 and 1, so the function Acos(t + ) 

oscillates between +A and A. 

 
 

Why 
2

T


  ?    The function f() = cos is periodic with period .  Since 

tand  is some constant, we have t. One complete cycle of the cosine 

function corresponds to and t = T,  (T is the period).  So we have 2 =  T or 

2

T


  .   Here is another way to see it: 

t
cos( t) cos 2

T

 
   

 
is periodic with period t 

t

Acos (t) 

+A 

–A 



cos  



sin  

=  

+1 

–1 

cos  



sin  



= 360
0
 = 2 rad

+1 

–1 
= 2


–1 

+1 
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= T.  To see this, notice that when t increases by T, the fraction t/T increases by 1 and the 

fraction 2t/T increases by 2.   



 
 

Now back to simple harmonic motion.  Instead of a circle of radius 1, we have a circle of 

radius A (where A is the amplitude of the Simple Harmonic Motion). 

 

 

 

SHM and Conservation of Energy: 

 

Recall PEelastic = (1/2) k x
2
 = work done to compress or stretch a spring by distance x. 

 

If there is no friction, then the total energy Etot = KE + PE = constant during oscillation.  

The value of Etot depends on initial conditions – where the mass is and how fast it is 

moving initially.  But once the mass is set in motion, Etot stays constant (assuming no 

dissipation.) 

 

At any position x, speed v is such that    2 21 1
tot2 2

m v k x E    .   

 

When |x| = A, then v = 0, and all the energy is PE: 
2

tot

0 (1/ 2)kA

KE PE E    

So total energy 21
tot 2

E k A  

 

When x = 0, v = vmax, and all the energy is KE: 
2

max

tot

0(1/ 2)mv

KE PE E   

So, total energy 21
tot max2

E mv .  

 

t

Acos (t) 

+A 

–A 

t = T

t

Acos (t) 

+A 

–A 

t) = 2
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So, we can relate vmax to amplitude A :   PEmax = KEmax = Etot     2 21 1
max2 2

k A mv  

 

max

k
v A

m
  

 

Example Problem:  A mass m on a spring with spring constant k is oscillating with 

amplitude A.  Derive a general formula for the speed v of the mass when its position is x. 

Answer: 

2
k x

v(x) A 1
m A

 
  

 
 

 

 

Be sure you understand these things: 

 

 

 

 

 

 

 

 

 

 

 

 

x   

y   

Etot = 

KE + PE 

(1/2)kx
2
 

PE   

+A A 

KE   

range of motion 

|x| = A 

 v = 0 

PE = max 

KE = min 

|F| = max 

|a| = max 

x  =  0 

|v| = max 

PE = min 

KE = max 

|F| = 0 

|a| = 0 
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Pendulum Motion 

 

A simple pendulum consists of a small mass m suspended at the end of a massless string 

of length L.  A pendulum executes SHM,  if the amplitude is not too large. 

 
 

 

The restoring force is the component of the force along the direction of motion: 

x
restoring force  = mgsin mg mg

L
        

Claim: sin (rads)   when  is small.  
h

sin
L

   

s

R
   

 

If  small, then h  s, and L  R, 

so sin    . 

 

 

Try it on your calculator:   = 5
o
 = 0.087266..  rad,   sin  = 0.087156.. 

 

restore

mg
F x

L

 
  

 
   is exactly like Hooke's Law  restoreF k x  , except we have 

replaced the constant k with another constant (mg / L).  The math is exactly the same as 

with a mass on a spring; all results are the same, except we replace k with (mg/L). 

 

 
spring pend

m m L
T 2 T 2 2

k mg / L g
        

 

Notice that the period is independent of the amplitude; the period depends only on length 

L and acceleration of gravity.  (But this is true only if  is not too large.) 

L 

x 



x / L  (rads) 

Forces on mass : 



FT = tension 

mg 

mg cos 

mg sin 

y 
x 

R 



L 

s h 
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Appendix: SHM and circular motion 

 

There is an exact analogy between SHM and circular motion.  Consider a particle 

moving with constant speed v around the rim of a circle of radius A.   

The x-component of the position of the particle has exactly the same mathematical form 

as the motion of a mass on a spring executing SHM with amplitude A. 

 

angular velocity 
d

const
d t


       

t      so 

 

x A cos A cos t       

This same formula also describes the sinusoidal motion 

of a mass on a spring. 

 

 

 

That the same formula applies for two different situations (mass on a spring & circular 

motion) is no accident.  The two situations have the same solution because they both 

obey the same equation.  As Feynman said, "The same equations have the same 

solutions".  The equation of SHM is 
2

2

2

d x
x

d t
    .  We now show that a particle in 

circular motion obeys this same SHM equation. 

 

Recall that for circular motion with angular speed , the acceleration of a the particle is 

toward the center and has magnitude  
2v

| a |
R

 .  Since v = R, we can rewrite this as  

 
2

2
R

| a | R
R


    

 

Let's set the origin at the center of 

the circle so the position vector R 

is along the radius. Notice that the 

acceleration vector a is always in 

the direction opposite the position 

vector R .  Since 2| a | R   , 

the vectors a and R are related by 
2a R   .  The x-component of 

this vector equation is: 2

x xa R  .  If we write Rx = x , then we have   

2
2

2

d x
x

d t
  , which is the SHM equation.  Done. 

 

A 

+A –A 

0 

v 



x 

a 

+A –A 

0 

v 

t

x 

R 


