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Fluids (= liquids or gases) 
  

Two definitions: 
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pressure  =  ,     p
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  ,    F = force perpendicular to area,  [p]  =  N / m
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mass m
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Consider a bucket of water.  What is the pressure at the 

bottom of the bucket due to the weight of the water? 

 

F weight mg
p =

A A A
 

 

Will now show that       p  =   g h   

m
m V

V
 ,      

mg V g (A h) g
p g h

A A A
 

More generally,  p g h , where h is the change in the depth below the surface of the 

water. This derivation assumes that density  = constant, which it is for the case of water, 

because water is incompressible. 

area A 

h = 

|y| 

total mass 

m 

A 

h V = A h 
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We are at the bottom of an ocean of air!   3

air 1.29 kg / m (at sea level)   Notice that air is 

about 1000 times less dense than water. 

atmospheric pressure at sea level = 5 2

atmp 1atm 1.01 10  Pa = 14.7 lb/in  

Air consists mostly of oxygen and nitrogen molecules. At room 

temperature, the molecules have thermal energy and are moving 

around rapidly (speed  400 m/s), colliding with each other and 

with every exposed surface.  The pounding of the air molecules on 

a surface, like the pitter-pat of rain on the roof, adds up to a large 

force per area:  patm = 14.7 psi. 

 

This is a big pressure!  We are not ordinarily aware of this big 

pressure because the air pushes on us equally from all sides (even 

from our insides due to the air in our lungs).  The big forces on us 

from all sides cancel out and there is no net force on us. 

 

 

  At a given depth, a fluid exerts the same pressure in every direction. 

 

Consider a block of water (outlined by an imaginary box) within a 

bucket of water.  Since the water is in equilibrium, the forces (and 

therefore the pressures) on opposite sides of the block must cancel. 

 

Example: At the surface of a swimming pool the pressure on a 

swimmer (due to the air) is patm = 1 atm.  At what depth below the surface of the water is the 

total pressure on the swimmer = 2 atm?  Answer: when the pressure due to the weight of the 

water alone is 1 atm, then the total pressure will be 2 atm.  
5

3 3 2

p 1.01 10 Pa
p g h h 10.3m

g (10 kg / m )(9.8m / s )
 

When computing the total pressure at a depth h below the surface of a liquid, we must include 

the pressure due to the atmosphere above the liquid: 

tot atmp g h p  

total p  =   p due to fluid above  + p due to atmosphere above fluid

vacuum 
air 

forces balanced forces unbalanced 

(Space Shuttle 

astronaut 

heroically plugs 

hole with head,) 

air 

surface 

air molecules 
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The pressure at a given depth is the same regardless of the shape of the container. 

 

Same h   same p at bottom 

 

 

 

Must be same level (due to same pressure 

at bottom) or else could have a perpetual 

water fall   free energy  impossible 

 

 

Archimedes' Principle 

A solid body, either partially or totally submerged in a fluid experiences an upward buoyant 

force = weight of the displaced fluid 

Before computing the buoyant force, let's first ask: Why is there an upward buoyant force? 

 

p g y  

net upward force on 

submerged object = buoyant 

force 

 

If buoyant force > mg, then object floats. 

If buoyant force < mg, then object sinks. 

 

Claim: An object of mass m and volume V, submerged in a fluid with density  fluid , will 

experience an upward buoyant force with magnitude = weight of displaced fluid = 

 

buoy fluid fluidF m g V g  

h 

smaller p 

h = 

|y| 

mass 

m 

larger p 



  Fluids-4 

Proof: This is a simple but slightly subtle argument.  We note the forces on a submerged object 

from the surrounding fluid (the buoyant force) are exactly the same as the forces on a block of 

fluid with the same size and depth as the submerged object. 

 

In equilibrium, the buoyant force on the block of fluid from the surrounding fluid must be equal 

in magnitude to the weight of the fluid, otherwise the block would not be in equilibrium.  

Therefore, the magnitude of the buoyant force on the submerged object is the same as the weight 

of the displaced fluid. 

 

Example:  A block of copper (Cu)  with mass m = 400 g and density  Cu = 8.9 g/cm
3
 is 

suspended by a string while under water.  How does the tension in the sting compare to the 

weight of the copper block? 

 
 

Since the block is not moving, the net force on it is zero and we can write: 

T BF F mg    ( since  | upward forces | = | downward forces | ) 

So we have FT = mg – FB    We must now compute the magnitude of the buoyant force FB. 

 

Archimedes says that FB is the weight of the displaced water  = mwater g  =  water V g where V is 

the volume of the displaced water = volume of the copper block.  We get V from 

Cu

Cu

m m
V

V
   so   water

B water water

Cu Cu

m
F V g g m g  

water water
T B

Cu Cu

1
F mg F mg m g mg 1 mg 1 0.89 mg

8.9
   

tension = ? 

FT 

buoyant force FB 

weight mg 

forces on block : 

m 

object fluid fluid 

weight of fluid 

buoyant force 
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So the tension in the string is only 89% of the weight of the copper block.  The buoyant force is 

helping support the weight of the block, so the tension is less than the full weight of the block. 

 

This calculation can be turned around and used to compute the density of a block, given its mass 

and the tension in the string.  Legend has it that Archimedes used this technique to determine the 

density of the king's crown (the king of Syracuse, a Greek colony in Sicily).  The king was 

worried that the crown was not pure gold, and Archimedes was able to show that the density of 

his crown was considerably less than the density of gold (Au = 19.3 g/cm
3 

), confirming the 

king's suspicion. 

 

Archimedes (Greek, 287-212 B.C.) was the greatest mathematician and scientist of antiquity. He 

was also a brilliant engineer and inventor.  His accomplishments in math, especially in geometry, 

were unmatched until the work of Isaac Newton, nearly 2000 years later. Archimedes should not 

be confused with a lesser scientist of ancient times: Aristotle (Greek. 384-322 B.C.).  In stark 

contrast to Archimedes, Aristotle was a lousy mathematician and an inept experimentalist.  

Aristotle was the first scholar to make a serious attempt to produce a rational model of the 

natural world — a world of physical laws discovered through experiment to replace the world of 

superstition and magic. Although Aristotle was on the right track, he was not good with 

quantitative arguments. Unlike Aristotle, Archimedes actually made things and performed 

careful measurements.  Archimedes knew that nature could not be fooled; if his computations 

were incorrect, then his devices simply would not work. 

 

 
Archimedes (Greek, 287-212 B.C.) 

 

 

 

 

 

 

 


