Thermal Properties

Temperature

What is temperature? It is a measure of the amount of "atomic jiggling". When something is hot (has a high temperature), its atoms are jiggling a lot. When it is cold (has a low temperature), its

atoms are jiggling little.
As temperature falls, atoms jiggle less and less. At "absolute zero" $\mathrm{T}=0 \mathrm{~K}$, all atoms stop, no motion.

Temperature $\mathrm{T}=$ measure of energy per atom

Various temperature scales:

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{F}}=\frac{9}{5} \mathrm{~T}_{\mathrm{C}}+32 & { }^{\circ} \mathrm{F}=\text { Fahrenheit } \\
\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273.15 & { }^{\circ} \mathrm{C}=\text { Celsius } \\
\mathrm{K}=\text { Kelvin }
\end{array}
$$

$1{ }^{\circ} \mathrm{C}=1 \mathrm{~K}, \quad 1{ }^{\circ} \mathrm{F}=(5 / 9) \mathrm{C}^{\mathrm{o}}$
room temperature $=72^{\circ} \mathrm{F}=22^{\circ} \mathrm{C}=295 \mathrm{~K} \approx 300 \mathrm{~K}$
absolute zero $=0 \mathrm{~K}=-273^{\circ} \mathrm{C}=-459^{\circ} \mathrm{F}$
[In the ideal gas law, $\mathrm{p} V=\mathrm{Nk} \mathrm{T}=\mathrm{n} \mathrm{R} \mathrm{T}(\mathrm{N}=$ \#molecules, $\mathrm{n}=$ \#moles $)$, must always use T in Kelvin.]

Thermal energy $\mathrm{U}=$ total energy of all atoms (random motion)
Heat $Q=$ amount of thermal energy transferred to a body.
$[\mathrm{Q}]=$ energy, SI unit of heat $=$ joule
popular unit of energy $=1$ calorie $(c a l)=4.184 \mathrm{~J} \quad$ Notice calorie spelled with a small "c".
$1 \mathrm{cal}=$ energy to raise T of 1 gram of water by $1^{\circ} \mathrm{C}$
$1 \mathrm{kcal}=1000 \mathrm{cal}=1 \mathrm{Cal}=4184 \mathrm{~J}=$ "food Calorie" Notice Calorie spelled with a big "C"
[Some primitive cultures use the BTU ("British Thermal Unit) = energy to raise a pound of water by $1^{\circ} \mathrm{F} .1 \mathrm{BTU}=1060 \mathrm{~J}$]

Definition: heat capacity of an object $=$ heat added per temperature rise $(\mathrm{J} / \mathrm{K})$
Definition: specific heat (or specific heat capacity) of a material $=\mathrm{c}=$ amount of heat added per unit mass per degree Celsius rise in temperature. If we have a mass m of some material, and we add an amount of heat $\Delta \mathrm{Q}$ and that produces a temperature rise of ΔT, then specific heat is defined as..

$$
\mathrm{c}=\frac{\Delta \mathrm{Q}}{\mathrm{~m} \Delta \mathrm{~T}} \quad[\mathrm{c}]=\mathrm{J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right) \quad(\text { SI units })
$$

Usually write the equation as $\Delta \mathrm{Q}=\mathrm{m} \mathrm{c} \Delta \mathrm{T}$
This equation says that if I have a mass m of some material with specific heat c, and I want to raise its temperature by ΔT, then I have to add an amount of heat $\Delta \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$.

$$
\mathrm{c}_{\text {water }}=1 \frac{\mathrm{cal}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}=1 \frac{\mathrm{kcal}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}=4186 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}
$$

Example: Heat your mug of coffee (which is mostly water) from room temperature to near boiling: $\mathrm{m}=200 \mathrm{~g}, \mathrm{~T}=20^{\circ} \mathrm{C} \rightarrow 90^{\circ} \mathrm{C}$.
$\Delta \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}=(200 \mathrm{~g})\left(1 \frac{\mathrm{cal}}{\mathrm{g} \cdot{ }^{\circ} \mathrm{C}}\right)\left(70^{\circ} \mathrm{C}\right)=14000 \mathrm{cal}=14.0 \mathrm{kcal} \times\left(\frac{4186 \mathrm{~J}}{\mathrm{kcal}}\right)=58600 \mathrm{~J}$
Different materials have different specific heats:

$\underline{\text { material }}$		$\underline{\mathrm{c}(\mathrm{cal} / \mathrm{g} \cdot \mathrm{C})}$
water 1.00 ice 0.53 aluminum 0.22 dry air 0.24 iron 0.11$.$inn		

(notice that liquid water has a high specific heat compared to other materials)

Example: Suppose we have 2 objects, labeled A and B (water and steel, say), with object A hotter than object B. They initially have temperatures T_{A} and T_{B}.
 (cold)

$\mathrm{m}_{\mathrm{A}}, \mathrm{T}_{\mathrm{A}}, \mathrm{c}_{\mathrm{A}}$
$\mathrm{m}_{\mathrm{B}}, \mathrm{T}_{\mathrm{B}}, \mathrm{c}_{\mathrm{B}}$

Bring A and B together, allowing them to exchange heat with each other, but not with the outside world $\Rightarrow A$ will cool, B will heat and both will reach same final temperature T_{f}.

Object A will lose heat: $\Delta \mathrm{Q}_{\mathrm{A}}<0$
Object B will gain heat: $\Delta \mathrm{Q}_{\mathrm{B}}>0$

$$
\begin{aligned}
\Delta \mathrm{Q}_{\mathrm{A}} & =-\Delta \mathrm{Q}_{\mathrm{B}} \\
\mathrm{~m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}} \Delta \mathrm{~T}_{\mathrm{A}} & =-\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}} \Delta \mathrm{~T}_{\mathrm{B}} \\
\mathrm{~m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{A}}\right) & =-\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{B}}\right) \\
\mathrm{T}_{\mathrm{f}}\left(\mathrm{~m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}}\right) & =\mathrm{m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}} \mathrm{~T}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}} \mathrm{~T}_{\mathrm{B}}
\end{aligned}
$$

...solve for T_{f} (does not matter if T is in Celsius or Kelvin, but must be consistent).

Phase changes.

phase $=$ solid, liquid, or gas $(S, L$, or G)
$\mathrm{S} \leftrightarrow \mathrm{L}$ (freezing/melting) or $\mathrm{L} \leftrightarrow \mathrm{G}$ (boiling/condensing) or $\mathrm{S} \leftrightarrow \mathrm{G}$ (sublimation)

Solid water (ice) can have any temperature in the range $-273^{\circ} \mathrm{C}<\mathrm{T} \leq 0^{\circ} \mathrm{C}$ Liquid water can have any temperature in the range $0^{\circ} \mathrm{C} \leq \mathrm{T}<100^{\circ} \mathrm{C}$

Can have a mixture of ice and water both at $\mathrm{T}=0^{\circ} \mathrm{C}$

ice + water

If heat is added to the mixture at $\mathrm{T}=0^{\circ} \mathrm{C}$, some ice melts, but T stays at $0^{\circ} \mathrm{C}$ until all the ice has melted.

Latent heat or heat of transformation $=$ heat required to cause phase change
Latent heat of solid/liquid trans. $\mathrm{L}_{\mathrm{SL}}=$ heat needed to melt 1 g of ice at $0^{\circ} \mathrm{C}$.

$$
\mathrm{L}_{\mathrm{SL}}(\text { water })=79.7 \mathrm{cal} / \mathrm{g}
$$

Requires 80 cal to melt a single gram of ice, but only 1 cal to raise temp of the liquid by $1^{\circ} \mathrm{C}$.

Example: How much heat required to change 100 g of ice at $\mathrm{T}=-10^{\circ} \mathrm{C}$ into liquid water at $\mathrm{T}=$ $+10^{\circ} \mathrm{C}$?

1. Heat ice to $\mathrm{T}=0^{\circ} \mathrm{C} \quad \Delta \mathrm{Q}_{1}=\mathrm{m} \mathrm{c}_{\text {ice }} \Delta \mathrm{T}$
2. Melt ice at $\mathrm{T}=0^{\circ} \mathrm{C} \quad \Delta \mathrm{Q}_{2}=\mathrm{m} \mathrm{L}_{\mathrm{SL}}$
3. Heat water to $\mathrm{T}_{\text {final }} \quad \Delta \mathrm{Q}_{3}=\mathrm{m} \mathrm{c}_{\text {water }} \Delta \mathrm{T}$

$$
\begin{aligned}
\Delta \mathrm{Q}_{\text {total }} & =100(0.5)(10)+100(80)+100(1)(10) \\
& =\underset{(\text { heat ice })}{500 \mathrm{cal}}+\underset{(\text { melt ice })}{8000 \mathrm{cal}}+\underset{(\text { heat water })}{1000 \mathrm{cal}}=9500 \mathrm{cal}
\end{aligned}
$$

Note that most of the energy went into melting the ice because of the large latent heat of water/ice transformation. This is good for people in Boulder. If LSL was not large, we would have big floods every spring, because all the snow would suddenly melt as soon as the temperature rose above melting.
$L_{L G}=$ heat of vaporization $=$ heat needed to transform 1 g of liquid water into vapor at $100^{\circ} \mathrm{C}$. $\mathrm{L}_{\mathrm{LG}}($ water $)=539 \mathrm{cal}$ This is a very large amount of heat \Rightarrow very expensive to distill water.

Example: Tiger, tiger, burning bright... In the 1956 science fiction movie, Forbidden Planet, Captain Adams (played by Leslie Nielsen) vaporizes a tiger with one shot from his "blaster pistol". This tiger is only about 6 meters away from the captain. About how much energy is required to vaporize a tiger? Is it a good idea to release this much energy this close to you?

A tiger is mostly water and has a mass of about $\mathrm{m}=250 \mathrm{~kg}$ (three time the mass of a man). In order to make the tiger boil away, you have to first raise the temperature of the tiger (water) from $\mathrm{T}=30^{\circ} \mathrm{C}$ (healthy tiger temp.) to $100^{\circ} \mathrm{C}$ (boiling). Then you have to evaporate the water at $\mathrm{T}=$ $100^{\circ} \mathrm{C}$. For each gram of tiger, the first step requires $70 \mathrm{cal}(=\mathrm{m} \mathrm{c} \Delta \mathrm{T})$, and the second step requires $539 \mathrm{cal}\left(=m L_{L G}\right)$, so let's say, roughly, at least 600 cal is needed per gram.

$$
\mathrm{Q}=250 \mathrm{~kg} \times \frac{1000 \mathrm{~g}}{\mathrm{~kg}} \times \frac{600 \mathrm{cal}}{\mathrm{~g}} \times \frac{4 \mathrm{~J}}{\mathrm{cal}}=6 \times 10^{8} \mathrm{~J} \quad(\text { just a rough calculation so } 1 \mathrm{cal} \approx 4 \mathrm{~J} .)
$$

How much energy is this $6 \times 10^{8} \mathrm{~J}$? This energy is about $200 \mathrm{~kW} \cdot \mathrm{hr}$. [One kilowatt•hour is 1000W (ten 100W light bulbs on) for 1 hour.] The power company charges about $\$ 20$ for this much energy (at 10 cents per $\mathrm{kW} \cdot \mathrm{hr}$). This energy is also the energy content of about 5 gallons of gasoline or about 300 sticks of dynamite. Releasing this much energy all at once would kill everyone nearby and make a huge, choking cloud of tiger smoke.

Heat Transfer

There are three (and only three) ways to transfer heat.

1) Conduction : heat transfer by direct touch
2) Convection : heat transfer by bulk movement of hot matter
3) Radiation: heat transfer by light (electromagnetic radiation)
