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CH. 3: Vectors 
 
In the real world, objects don’t just move back and forth in 1-D!  

 

In principle, the world is really 

3-dimensional (3-D), but in 

practice, lots of realistic 

motion is 2-D (like the 

examples shown here)   

 

To describe the position of an object in 2- (or 3-) D, with respect to an origin 

requires that you tell not just how FAR from the 

origin it is, but WHICH WAY. 

 

 

You need a vector to describe this. I think of it as a kind of arrow, and indicate it 

either just with bold letters, like V, or with a little arrow on top:   
! 

V .    

We will often label a vector in a diagram by its magnitude, and its angle with 

respect to some axis. Mathematically, we write  

  
V =

! 
V  = the magnitude of the vector V. 

 (Note, the magnitude isn’t written bold) 

The magnitude of any vector is a positive number. 

 Projectile

   or

 Boat tacking

 Origin

 X

 V

 x

 y

 θ
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Examples of vectors in nature: velocity (has a magnitude AND direction!), force, 

acceleration,... I find it easy to visualize that displacement  (change in position) is a 

vector, but I find it a little weird to think of position itself as a vector. But it is. 

Think of it as the vector which points from the origin to where the object is. We 

usually label position as r.  (Unlike the displacement vector , the position vector 

DOES depend on your choice of axes - your coordinate system. Maybe that’s why 

I find it a little unusual!?)    

 

There are also lots of quantities in nature that are not vectors. E.g. mass, speed, and 

time have no direction associated with them. They are scalars. 

 

The location (on the page) of a vector is irrelevant!  (Only magnitude and direction 

count.)   

That is, the following two velocity vectors 

are IDENTICAL!  They both represent the 

same velocity. 

 (Perhaps one is a car in Honolulu, the other in Boulder, but both are going  

50 mi/hr heading northeast. That’s the exact SAME velocity!)  

 

 v=50 mi/hr

 v=50 mi/hr
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Vectors can be combined! 

Suppose I move 3 meters East, first. (That’s a displacement, a vector). Then later I 

move an additional 4 m North.  We could ask "what is the total, or net 

displacement?" Answer:  It’s the SUM of the two displacements. The vector sum. 

 

In this case, it’s graphically clear what’s going on:   

(Note that the sum is not 3+4=7 m long , it’s 5 m, by 

the Pythagorean theorem. 

Graphical addition of vectors always works just like 

this example, no matter what physical vector you’re 

talking about.  

To add vectors, line them up “tip 

to tail”, and then the sum goes 

from the start of the first to the 

end of the last!  

 

 

There’s another method that’s geometrically 

equivalent, called the “parallelogram 

method”. Look at the picture and convince 

yourself it’s the same thing! 

 

You can always add more than two vectors.  

Just put them all “tip to tail” in a chain. 

(Think of making a series of displacements!)  

 Δx1 = 3 m E

 Δx2 = 4 m N

 Δx total =
     Δx1 +  Δx2

 v2
 v1

 v1 + v2

 v1
 v2

 +

 Moved together,
tip to tail... :

 v2
 v1

 v1 + v2
 v1

 v2

 +

 The sum is the
diagonal of this
parallelogram...
(tails together)

 C

 A
 B

 D A+B+C+D
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You can also MULTIPLY a vector times a scalar.  

E.g. 2V doubles the length of V, but 

doesn’t change its direction. 

In general, cV is “c” times longer than 

V but in the same direction. The only 

exception is if c is negative, which flips 

the direction! 

 

By the tip to tail rule,   A + (-A) = 0, (convince yourself!) which is what you would 

hope!  (0 is the “zero vector”, which has no length) 

You can subtract vectors    The most straightforward way is this:  

A-B is the same thing as A+(-B).   So to subtract a vector, you add its negative.  

 

 

(Flip and add)   An example: 

 

 0.5 A A

 -A

 2A

 v2  v1

 v2 - v1
 -v1

 v2

     -

 Flip v1:  -v1

 Now add
 v2 + (-v1)
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There’s another method ,  the “parallelogram method of subtraction” .  

(It’s different from adding, we want the OTHER diagonal this time!) 

There’s only one hard thing about this 

method. Which way does the arrow 

point on v2-v1? The rule is just as 

shown in this picture, but WHY?  

Here’s how I think of it:   

Can you see that mathematically, you 

must have v1 + (v2-v1) = v2. 

(See, I just “cancelled out” the v1 terms!) Now look back at the picture above. 

Can you see that v1 and (v2-v1) are perfectly lined up “tip to tail” in the picture? 

So the picture looks like I’m  ADDING v1 and (v2-v1), and the sum is v2, just as I 

said it should be. (If I had put the arrow on (v2-v1) backwards, this little addition 

wouldn’t make any sense!!! If the arrow on the difference was drawn the wrong 

way, the picture would then look like v2+(v2-v1) = v1, which is clearly nonsense. 

The v2’s don’t cancel out!!) 

 

So with addition and subtraction and scalar multiplication, you can manipulate 

vectors just like you do numbers, algebraically. For example, if you define  

Δr = r2 − r1 , then you can add r1 to both sides to get r1 + Δr = r2 ,  

 initial position + change = final position. (True for vectors, just like it was in 1-D) 

 

 v2  v1

 v2 - v1

 v2

     -

 v1

 Form the parallogram
 with v1 and v2 as sides.
 (i.e. tails together)
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Components of vectors 

These graphical methods are conceptually important, but in practice, you don’t 

want to have to draw careful pictures to be able to add vectors. Components save 

the day.  Any vector D has components in a coordinate system. 

  Here, Dx  is the “x component of vector D”. 

 If D is a displacement, think of it as “how much of 

the motion was towards the right”. 

 

To find components, you must define a coordinate 

system. Here, I picked a regular rectangular or 

“Cartesian” x-y coordinate system. 

Trigonometry relates the components to the magnitude and angle: 

Dx = Dcosθ

Dy = Dsinθ
 

and similarly, you can go the other way. If you know the components, you can 

figure out the magnitude and angle by 

D = Dx
2 + Dy

2

θ = tan −1(Dy / Dx )
 

(Can you convince yourself that these formulas are correct, just by looking at the 

picture above?) 

 

 Dy D

 Dx

  θ
 x

 y
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It’s perfectly possible for a component to be NEGATIVE. For example, this vector 

has a negative x component, Dx < 0  (but it has a 

positive y component). 

Suppose theta=60 degrees in this figure, and D=4. 

If I just blindly plug into the formula I had above, 

Dx=Dcos(theta) = 4 cos(60)= +2, I don’t see that 

minus sign. Why not? 

Because “theta” in the formula earlier is the angle 

with the +x axis. In this figure, even though I called it theta, it’s a different angle! 

(angle with the -x axis).   

Don’t use that formula without thinking, look at the picture!  

Here, clearly Dx is “leftwards”, it’s got to be -2.  (If you really want to use the 

formula, notice that the real theta is 180-60 = 120 degrees, and 4 cos(120) = -2...) 

 

Why are components useful? Because they make adding and subtracting so easy! 

Suppose C = A+B.  Then, Cx = Ax + Bx  (similarly for y components).  

I can add NUMBERS now, on a calculator, rather than trying to add “pictures”.   

Components are just plain old numbers!   

I can prove Cx = Ax + Bx  

with a simple picture: 

 

(Similarly, if D=A-B, 

then Dx = Ax − Bx .) 

 Dy
 D

 Dx
  θ  x

 y

 By
 C = A+B

 Ax  x

 y

 A

 B

 Cy=Ay+By
 Ay

 Bx

 Cx  = Ax+Bx
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Unit vectors 

We define a little “unit vector” called ˆ i  (that’s “i-hat”), which has LENGTH 1, 

and points in the +x direction. Similarly, ˆ j  (“j-hat”) has ˆ j =1  and points in the +y 

direction. (In 3-D, we’ll add “k-hat” in the +z direction)  

I claim that ANY old vector V can be (uniquely!) written like this: 

  

! 
V = Vx

ˆ i +Vy
ˆ j    

(where Vx and Vy are the usual x 

and y components)   

This can be seen by staring at this 

picture: 

 

Vx
ˆ i  is the product of a number (Vx) times a vector (ˆ i ), so it’s a vector. Its length 

is Vx times the length of ˆ i , which is one, so its length is Vx.  

Look at the picture: Vx
ˆ i  is the “right pointing vector”, that makes up the bottom 

leg of V.   (It’s just a convenient notation, useful when doing “vector arithmetic”.) 

 

In this notation, if you want to add A+B,  with 
  

! 
A = Ax

ˆ i + Ay
ˆ j  and  

  

! 
B = Bx

ˆ i + By
ˆ j  

you just have 
  

! 
A +
! 
B = (Ax + Bx )ˆ i + (Ay + By )ˆ j  

(note that the “x component” of A+B, i.e. the coefficient of ˆ i  above, is  

(Ax + Bx ) , just as it should be! 

 

 V

 x

 y

 Vy j

 Vx i  i

  j
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We can now go back to the kinematics equations we had in 1-D, and write them 

down immediately (and correctly) in 2-D or 3-D, just by adding vector signs. 

Example: average velocity (vector) is defined by 
  

! 
v ≡ Δ

! r 
Δ t

, where r is the position. 

(Just like we had v ≡ Δ x
Δt

 in 1-D)  (Note:   Delta t is NOT a vector, it’s a number!) 

You can manipulate the equation in usual algebraic ways, e.g.  

  Δ
! r =
! 
v Δ t    (just multiplied the definition through by the scalar number Delta t) 

Since   Δ
! r = ! r 2 −

! r 1  (by definition), we have   
! r 2 −
! r 1 =
! 
v Δ t,   so   

! r 2 =
! r 1 +
! 
v Δ t . 

 

The picture shows you this equation graphically:  

final position    =    initial position + change. 

The CHANGE in position is given by   Δ
! r =
! 
v Δ t  

(Study the picture to see that the arrow on Delta r is in the right direction!)  

 

Similarly, 
  

! 
a ≡ Δ

! v 
Δ t

, which leads to   
! v 2 =

! v 1 +
! 
a Δ t   (a familiar 1-D eqn, only now 

with vector signs)  It means v final   =  v initial + change in v,  

and change in v is given by   Δ
! v =
! 
a Δ t .  (Same picture, just replace r’s with v’s) 

 Δr = r2-r1
      = v Δt r1

 r2
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Instantaneous quantities are also defined just as before:    

  

! v ≡ lim
Δ t→0

Δ
! r 

Δ t
=
d ! r 
d t

 ,             and similarly     
  

! a ≡ lim
Δ t→0

Δ
! v 

Δ t
=
d ! v 
d t

.    

What do those nasty looking formulas mean?  

Whenever you see a vector equation, you can always think about it in terms of 

components!  If A=B, that simply means Ax = Bx, and Ay=By.   

E.g., the x component of that  a" equation above (right) tells you ax =
dvx
dt

 

  
Suppose you know what x(t) and y(t) are for a particle. That means you know 

where it IS at all times, you know its position vector   
! r (t) = x(t) ˆ i + y(t) ˆ j .    

(Can you see that the “x component” of position is simply x?!)  

So we can immediately find 
  

! v = d
! r 
dt

=
dx
dt

ˆ i + dy
dt

ˆ j     

(or, in other words, looking at the "x components" of that equation,  vx =
dx
dt

) 

And we also know 
  

! a =
dvx
dt

ˆ i +
dvy
dt

ˆ j .            

(or, in other words, looking at the "x components" of that equation,  a x =
dvx
dt

) 

 

If you know position,   
! r (t) , these formulas tell you what the velocity and 

acceleration are. If you feel intimidated, just work separately on the x equations 

(like vx =
dx
dt

,  or a x =
dvx
dt

, by themselves, just like you had in 1-D)      
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Example:  A particle moves in 2-D.  

Its x-coordinate is steadily increasing with time, x=20 t (it’s moving to the right) 

but at the SAME time, its y-coordinate is  y=-5 t^2.   

(it’s moving down, and indeed going farther and farther down each second because 

of that “squared” on the time)   

How do you picture this? Think of  a ball tossed in the air - moving sideways AND 

up and down simultaneously!  This will be the main focus of Ch. 4, by the way! 

The formulas say 
  

! v = d
! r 
dt

=
dx
dt

ˆ i + dy
dt

ˆ j = 20ˆ i −10t ˆ j            (Do you see why?)  

Which means vx = 20, a constant (makes sense, that’s what I said. In the x 

direction, it moves rightwards in a steady fashion, x=20t, uniform x-motion) 

It also says vy=-10 t is changing with time.  (This also makes sense - it’s going 

faster and faster, DOWN (in the negative y direction) because of the t^2 term...) 

 

Finally  
  

! a =
dvx
dt

ˆ i +
dvy
dt

ˆ j = 0 ˆ i −10 ˆ j .   

There is NO acceleration in the x direction (sideways), which is what we said in 

words  - the motion is STEADY in that dimension.  (vx is a constant,  no change.)  

But it is not zero in the y-direction - it is CONSTANT =-10. It is accelerating 

DOWN in the y direction. (Just like a ball in gravity does!) 


