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Conservation of energy. 

Kinetic friction is a somewhat unusual force. It’s always fighting you. It does 

negative work, no matter which way you go. If you do work on an object that feels 

friction, that work is (practically) lost. You can’t easily get it back. We call friction 

nonconservative for this reason. Compare it with, say, gravity. If you do work on 

an object that feels gravity (e.g., lifting it up), you can get all that work back - just 

let the object fall back down again by itself! Gravity is a conservative force. 

 

If I lift an object, where exactly does my work go? Imagine starting and ending at 

rest, so W(net) = Δ K = 0.  Still, I did + work while lifting it.  That work (or energy) 

is stored, in what we call potential energy, or “U”.  An object high up has energy, 

it has the capacity to do work by virtue of its position. This is not kinetic energy, it 

can be at rest. It’s potential energy.   

 

Spring forces are also conservative. If you do work compressing a spring, the work 

is stored up, as “spring potential energy”. Like a cocked dart gun: there is potential 

energy there, you can get it all back later.   

 

How much energy is stored, quantitatively? Let’s consider gravity again. 

We know (last chapter) it requires +mgh of energy to lift an object up a distance h. 

So that’s exactly how much energy you’ll get back later if it falls.  In other words, 

that’s how much potential energy has been stored by lifting it up. We say 

the stored gravitational potential energy  is U(grav) = mgh, in this case.  
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Let’s be a little more rigorous. Suppose I move an object against some conservative 

force, call it Fc. 

 I will have to apply a force F_me = - F_c to move it around. 

Then, W(by me) = - W(by Fc) as I move it around.  This W(by me) is precisely the 

work (energy) that’s being stored up. That will be the additional potential energy, 

Δ U,  the object has gained because of me pushing it around: 

Δ U = W(by me) = - W(by Fc),  or (using the definition of W from Ch. 7)  

  ΔU = −
! 
F c ⋅ d

" r r0
rf∫  

The potential energy here is associated with the conservative force Fc, we might 

label it e.g. ΔU(spring) or ΔU(grav).  For gravity, this integral formula becomes 

 ΔU(grav) = − (−mg) dyy0
yf
∫ = +mg Δy . 

(The minus sign inside the integral is because gravity is down, 

opposite to dy)  No matter what, the final sign is always correct:  

If the object moves down, Δ y<0, and gravitational potential energy has decreased. 

If the object moves up, Δy > 0 , potential energy has increased. (Energy is stored)  

 

• Only ΔU matters, not the value of U itself. We can define U to be zero wherever 

we want, it’s like choosing an origin. You can call “zero gravitational potential 

energy” the floor, or the basement, sea level... All that ever matters is the change in 

U as something moves to different places.   I will therefore usually define  

U(grav) =mgy (which agrees with the derived formula ΔU(grav) = mg Δy , and sets 

U(grav)=0 at wherever I happen to chose to call y=0.)  

 Fc  Fme

 Fg

 y0

 yf

 dy
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• The path you take moving an object is irrelevant for Δ U, if the force involved is 

conservative. The change in gravitational potential energy is the same no matter 

what path you take to get from y0 to yf.  

• U can be negative, it’s quite meaningful to say an object has “negative potential 

energy”. E.g., if the floor is defined to be zero potential, then a bowling ball in the 

basement has negative U. You would have to do work ON it to bring it up to zero 

energy! 

• If you had a spring force, instead of gravity, you’d have 

ΔU(spring) = − (−kx) dxx0
xf∫ = +

1
2
k(xf

2 − x0
2) , where x is the stretch of the spring. 

Once again, the zero is arbitrary, we can e.g. choose U(spring) = + 1
2
k x2 ,  

so a relaxed spring would be said to have no potential energy. 

Stretched or compressed, the spring’s potential energy is now positive, which 

makes sense - the spring can do some work.  

_________________________________________________________________________________________________ 

The central idea of this chapter (and much of modern physics) is conservation of 

energy.  Let’s begin by considering cases where there are only conservative forces 

acting (no friction!) We’ll come back and talk about friction soon. 

 

The W.E. Theorem says ΔK = Wnet , but we just defined Δ U= - W(by Fc). 

 If there are only conservative forces around, W(net) = W(by Fc), and 

ΔK = Wnet =Wby Fc = −ΔU.  We can rewrite this several different ways:
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ΔK + ΔU = 0 ,     or              Δ(K +U) = 0 ,      or            (K+U) = constant.  

K=Kinetic energy, U=potential energy,  K+U =  “Total” or “Mechanical Energy”. 

The equations at the top all say total (mechanical) energy is conserved, it never 

changes (if there are no non-conservative forces around)   

Energy can change form, e.g. from potential to kinetic and back. It can change from 

one type of potential to another (e.g. grav. to spring.) But, it never disappears. 

 

Example:   Drop a mass m, from a vertical position y0 to a final (lower) position yf.  

At the start, (K+U)(initial) = K0 + U0 = 
  
1
2
mv0

2 +mgy0  

(Assuming here we started at rest, this simplifies to mgy0.) 

At the end (K+U)(final) = Kf+Uf = 
  
1
2
mvf

2 +mgyf . 

Conservation of energy says K+U never changes. Setting initial energy to final E:  

  
1
2
mvf

2 +mgyf = 0 +mgy0 , or dividing through by (1/2)m:  vf^2 = 2 g (-Δ y) 

Note: this agrees with our old Ch. 2 formula, vf^2 = v0^2 + 2 (-g) (Δ y)  

 

• Conservation of energy does not say “K=U”. Don’t ever write that. Don’t ever 

think that! Granted - in some super simple problems, where K0=0 (starting at rest), 

and Uf=0 (ending at ground level), you have K0+U0 = Kf+Uf, which simplifies to  

0+U0 = Kf+0,   or U0=Kf.  But this is a very special case!  

ALWAYS, always write it out:  E0=Ef,  or better yet, K0+U0 = Kf+Uf,  

(Think about what each quantity means) That’s conservation of mechanical energy. 

 y0

 yf
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Example:  A spring (constant k) is compressed by an amount x0.  It is then pointed 

vertically, and launches a dart straight up in the air. How high does the dart go? 

 

If you think about forces, it’s a hard problem. The spring force changes all the time, 

(F=kx) so acceleration is not constant, and then you can’t use any Ch. 2 formulas. 

But, the only forces in this problem (spring, and gravity) are conservative, so you 

know you can use conservation of energy.    

 

Initially, we have K0=0 (dart is at rest), U0(grav)=0 (dart is at ground level), but we 

DO have stored spring energy, U0(spring) = 1/2 k x0^2.   

At the top of the path, the dart is momentarily at rest (Kf=0), and now the spring 

has “unsprung”, so it has no more stored energy Uf(spring) = 0. The dart is up in 

the air, it has Uf(grav) = +mgy.  Conservation of energy says 

E0 = Ef, or writing out all the contributions to mechanical energy: 

K0+U0(spring) + U0(grav) = Kf + Uf(spring) + Uf(grav) , 

0 + 1/2 k x0^2 +    0            =   0   +    0          +  mgyf, 

or   yf = (
1
2
k x0

2) / (mg)  

 

Easy enough...  

I could also ask for the speed at any intermediate height, it’s basically no harder to 

find this as well. (You would have to add in (1/2 m vf^2) on the right side, and then 

solve for vf.) 
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Example:  A pendulum swings. Given the initial configuration 

in the picture, figure out the speed v at the bottom of the swing. 

 

Once again, using forces is nasty. The relative angle of “T” 

(tension) changes as we swing: a is not constant. 

 Can we use conservation of energy? We have a new force, the tension of the string, 

to worry about. If it does work on the system, then we could be in trouble. (If an 

outside force does work, you won’t conserve energy. Like a “nonconservative” 

force, there’s no potential associated with it. We’ll discuss this at the end of the 

chapter). But here we’re o.k.: Look at the picture and convince yourself “T” is 

ALWAYS perpendicular to velocity, in other words, “T” does zero work! 

(Remember, if F is perpendicular to displacement, no work is done).  

 The only force doing work is gravity, and that’s conservative.  So we can use 

E0 = Ef 

K0 + U0 = Kf+Uf.    

We start at rest, so K0=0 

The height y0 is obtained from this little geometry diagram: y0 = L-Lcosθ .  

We end at the bottom, yf=0.  Putting it all together, I have 

0 + mg(L-Lcosθ ) = 1/2m vf^2 + 0, which is easy to solve for vf. 

Indeed, I could find the speed anywhere along the path, e.g. at any other 

intermediate height y’, because 0 + mg(L-Lcosθ ) = 1/2m v’^2 + mgy’.   

(A problem that’s hard to do with Newton II is often as easy as geometry, and 

writing E0=Ef, when energy is conserved.) 

 L
 θ 

 mg
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Example:  A roller coast starts at the top of a hill, height y0, with some given v0. 

Can you find its speed at some later position, say height yb?  Also, in the end it runs 

into a large spring (constant k) which stops it. How far is the spring compressed.?  

N-II is a nightmare now. Think how 

complicated the Normal force is! 

But (if friction is negligible), we can use 

conservation of energy. 

K0+U0  = Kf+Uf 

  
1
2
mv0

2 +mgy0 =
1
2
mvb

2 +mgyb   

If you want vb just solve for it:  vb = 2g(y0 − yb) + v0
2 .         Done! 

How about the compression of the spring? Energy is STILL conserved! 

After the spring has compressed by the unknown “x”, the car is stopped, i.e. Kf = 0. 

  
1
2
mv0

2 +mgy0 = 0 +mgyf +
1
2
k x2      Just solve for x... 

The roller coaster example leads to a way to graphically visualize conservation of 

energy.  Since U(grav)=mgy,  a graph of y vs x (like the picture above) is the 

SAME shape as a graph of U(grav) vs x. We call this a graph of U(x).  

This time, assume we start at rest. So 

Etot = E0 = =0 + U0 = mgy0. 

Etot is shown by the dashed line. 

(It’s constant, never changes!) 

At any intermediate point, U+K=Etot. That’s shown in the picture. U is the height 

of the graph, so K is the distance from the graph up to the dashed line...

 y0

 yb

 vb ?

 yf

 v0
 k

 U

 U

 K
 Etot

 (start at rest)

 (valley)

 (turning point)
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At a “turning point”, the graph of U(x) reaches up to Etot. Since U+K=Etot, that 

means that K=0 there. The object is stopped, and turns around (hence the name) 

If you added a little energy at the beginning (e.g., if the cart started with some initial 

nonzero K), the graph of U(x) is unchanged, you just lift up the Etot line a little. 

 

 

 

 

 

What about if there’s friction?  

The W.E. Theorem says ΔK = Wnet =Wby Fc +Wnonconserv = −ΔU + Wnonconserv . 

That means ΔK + ΔU =Wnonconserv .   

If you have nonconservative forces (like friction), this means total mechanical 

energy is NOT conserved. (Friction => the right side will be negative, the change in 

Etot will be negative, total energy will be decreasing.)  

 You can use this formula to solve lots of problems that have friction in them, as 

long as you can calculate (or estimate) the right side, i.e. W(non-conservative). 

 

Similarly, if there is any external or “outside” force (like e.g. your hand) which is 

not conservative (there’s no potential energy, U, associated with the force), then 

you’ll have ΔK + ΔU =Wnonconserv +Wexternal .  If you do work on a system, 

W(external), the mechanical energy of the system will change.  (Makes sense.) 

 same U

 U

 more K

 Etot
 (turning point,
  a bit farther)
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Example:  An object at the end of a spring, initially compressed by x0, is released 

from rest. It sits on a rough surface, the coefficient of kinetic friction is µk . When 

the object has reached the “relaxed” position, x=0, how fast is it going? 

Again, the force is not constant, so we couldn’t use 

any Ch. 2 “constant a” Eqns.     N-II won’t be easy. 

There IS friction, so we cannot assume conservation 

of energy. But it’s not hard to figure out W(nonconserv) here: 

W(friction) = |F(friction)|*|Δ x|*cos(180) =  - µk  N x0.   

(N is the normal force:  in this flat case, it’s going to be mg. Do you see why?   

|Δ x| is x0, the distance traveled.   Do you see why the - sign is there? )  

ΔK + ΔU =Wnonconserv  tells us 

(Kf-K0) + (Uf - U0) = W(friction) = -µk  mg x0. 

Now, 
  
Kf −K0 =

1
2
mv2 − 0    (it started from rest), and 

  
Uf −U0 =

1
2
k02 − 1

2
k(−x0 )

2   so we have 

1
2
mv2 − 1

2
kx0
2 = − µk mg x0 ,    or 

v =
k
m
x0
2 − 2 µk g x0  

That’s it. We used the principle of energy conservation to solve this problem, 

although technically energy was lost due to friction. But we were able to calculate 

the lost energy easily enough. 

 

 x0

 m
 k

 x=0
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Relation of force and potential: 

If you apply a (conservative) force over a small distance, the amount of work done 

is easy to compute, W(by Fc)= Fc ⋅ Δr , or in 1-D, Fc Δx .   

Now recall, we defined Δ U = - W(by Fc) = -Fc Δx .   

Dividing both sides by Δ x, and taking the limit of very small Δ x,  we get 

Fc = - dU/dx. 

If I give you the potential energy as a function of position, U(x), you can thus 

immediately compute the associated force by taking the derivative.   

Example:  Diatomic molecules typically have a potential energy as a function of 

separation that looks something like this: 

The potential energy is large and positive when x is 

small - so, if you squeeze it, the energy is large (think of 

a spring, with lots of stored energy when squeezed.)    

If x is large (atoms far apart), energy is basically zero.  

U is negative in the middle, that means the molecule is happy there! (Everything 

likes to go to the lowest possible energy, like balls rolling down to the basement.)  

The formula says F= -dU/dx.  For small x, look at the graph: dU/dx (slope) is -, 

the force is therefore + (repulsive). (This shows the molecule acts like a spring.) 

For large x, dU/dx is +,  the force is therefore -, the atoms are attracted together. 

If x=x0, the slope is zero: no force. This is “equilibrium”, the position where the 

molecule likes to be.    

F is a basically a derivative of U, U is basically an integral of F. Makes some sense. 

 x0

 U(x)

 x
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Energy is always conserved. It doesn’t look like it when there’s friction in the story, 

but it’s really true. If there’s friction, mechanical energy is indeed “lost”, but the 

table and object heat up. Mechanical energy has been transformed into heat energy. 

If you had a formula for heat energy (and we will, later in the book) you could 

INCLUDE heat energy as part of “total energy”, add it to the K+U, and then you’d 

restore conservation of total energy.  

Mechanical energy, K+U, is not conserved if there’s friction, but total energy, 

K+U+thermal+chemical+nuclear+rest mass energy+...     is conserved.  

You have to keep track of all forms of energy, and then energy is exactly conserved.  

 

That last term, “rest mass energy”, is given by E=mc^2.  Einstein discovered it, it’s 

another form of energy which is very real, and needs to be included if you want to 

use conservation of energy completely accurately. 

There is no approximation involved with conservation of energy, this is one of the 

greatest and most accurate laws of physics. Unlike Newton’s laws (which were 

modified by relativity and quantum physics), conservation of total energy is still 

believed to be absolute and fundamental. The universe has a certain amount of 

energy which will never change. The form of that energy can change, from kinetic 

to potential to heat, back and forth, but the total remains fixed. (Some forms are 

more useful to us than others!)   

When something is conserved, it’s a wonderful tool to solve problems and 

understand physics, because if you know the total to start, you know it forever: it 

makes solving for (certain) quantities quick and simple arithmetic. 


