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Gravity 

Gravity is remarkable. An apple falls out of a tree- what made it accelerate? 

Nothing touches it. Saying the motion is due to “gravity” doesn’t explain it.  

Einstein, in his general theory of relativity (1917) went very far in explaining why 

there is gravity. But let’s follow Newton’s path, and merely try to describe it...  

 

Gravity acts at a distance. Since the acceleration due to gravity is constant, gravity 

apparently acts at the top of trees as well as the bottom. How high does it reach? 

In Australia, gravity still acts towards the center of the earth. It appears that it is the 

earth itself which is doing the attracting.   

Let’s think about projectiles again. 

Suppose v0 is very big. So big, that in the few 

seconds it takes to fall “h”, it has traveled a very 

long way horizontally. 

Suppose it travels so far, that you finally notice the earth is not flat: 

This projectile goes further than we 

thought in Chapter 4. It hits the ground 

later. What if v0 is bigger still? It hits 

further and farther away. Could it ever be 

going so fast that it never hits, that it keeps 

missing the ground? The answer is yes - 

the moon does this!  

 h

 v0

 h

 v0
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This was Newton’s epiphany: the moon’s motion is of the exact same nature - due 

to gravity - as falling apples. Gravity reaches up to the top of a tree, or mountains. 

Why not up to the moon? Why not further?  Newton realized that there is one 

universal law of gravity, affecting all masses. One law that could explain and unify 

falling objects, projectiles, orbiting objects, and indeed all astronomy.  

 

By 1650, the distance to the moon was well known: about 60 Re  (60 earth radii).  

The moon’s period T was also well known: about 27 days.  

Newton could thus easily compute a(moon) = v(moon)^2 / R  (using v = 2 Pi R/T) 

Put in the numbers, you’ll find a(moon) = 3E-3 m/s^2 = (1/3600)*g. 

Conclusions:  the moon is about 60 times further from the Earth’s center than us, 

and a(moon) = (1/60^2)*g  (whereas  a(for any body near the earth) = g)   

F(grav) on any object here, mg, is proportional to the mass. Newton III says the 

force should be equal (and opposite) on both objects that gravitationally attract: the 

formula for gravity must be symmetric in the masses. Newton put this all together:  

If you have any two objects, with masses M1 

and M2 respectively, separated by a distance r 

(measured from center to center), there will be 

an attractive force of gravity between them, given by  

Newton’s Universal law of Gravity:   F12 = F21 = Fgrav =
GM1M2
r2

      

G is a constant of nature, G = 6.67 ⋅10−11 N m2 / kg2 .  (Not the same as g!)  

G was not measured for > 100 years, by the way, until Cavendish (1798) 

 F12 F21
 M1  M2

 r
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If an object is spherical (not a “point”) it exerts an F(grav) on other bodies that is 

the exact same as if all the sphere’s mass were concentrated at its center. (Newton 

worked for 20 years to prove this mathematically).  

 

Example:  What is the gravitational attraction between 2 humans, 1 meter apart? 

Fgrav =
GM1M2

r2 = 6.67 ⋅10−11 N m2

kg2
(65kg)(65 kg)

(1m)2 = 3 ⋅10−7 N  

That’s a small force. The weight of a mosquito is about 1000 times more than that.  

 

Example:  What is the force that the earth applies to an object with mass m? 

Fgrav =
GM1M2
r2

=
GMearthm
rearth
2 = 6.67 ⋅10−11 Nm

2

kg2
(6 ⋅1024 kg)(m)
(6.4 ⋅106m)2

= 9.8 m
s2
m  

Oh of course! The answer is mg, just as we’ve been using all semester. 

If you climb 5 m to the top of a tree, r =6.4E6 m + 5 m  => no noticeable numerical 

difference. Even at the top of Mt. Everest, taking r= 6.4E6 m + 8E3 m, the answer 

is still unchanged to two sig figs. At the orbital height of the Shuttle,  

h=250 km above the surface, the appropriate r for the formula (to find F(grav) on 

the shuttle, or the astronauts) is r(earth)+h = 6.4E6 m+2.5E5 m =  6.65E6 m.  

Still a fairly small numerical change.  When you square 

it, the answer is slightly different (down to about 93% 

what it was at the surface.)  We talked about this in Ch. 

5. The astronauts aren’t weightless, they’re just in 

freefall (the only force acting on them is gravity).   

 astronaut
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Kepler’s Laws, and Planetary Motion: 

Kepler was 70 years before Newton. He discovered some patterns in the data of 

Tycho Brahe (this was before telescopes.) He summarized the data with the 

following laws, but he didn’t understand why they were true. 

 

1)  The orbit of all planets is elliptical, with the sun at a focus. 

 

2)  Planets “sweep out” equal areas in equal times. 

(Closest to sun = perihelion = fastest. 

Farthest from sun = aphelion = slowest) 

 

3) The period, T, of a planet and its distance R from the sun 

(technically, the “semimajor axis R of the elliptical orbit”) 

satisfy the curious relation R3 / T2=constant    

 (and it’s the same constant for all the planets around the sun.) 

 

Newton was able to show that these laws arise directly, mathematically, from his 

universal law of gravitation. (Compelling proof that his law of gravity was correct.) 

Example:   Let’s prove Kepler’s third law for the special case of circular orbits. 

Circular orbit means a = v^2/R.  Remember,  N-II says F_net = ma = mv^2/R, 

where m = mass of the planet, and R = radius of the planet’s orbit around the sun.  

What supplies this F_net? What’s the physical force on the planet?  

There’s only gravity acting,  so F_net = Fgrav =
GMsunm
R2

 .   

 sun

 aphelionperihelion

 R
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Combine these, and notice that m cancels out. Thus, no matter what the mass of the 

planet is, we will have v
2

R
=
GMsun
R2

, or if you prefer, v =
GMsun
R

. 

If you have an orbit around something else, replace M(sun) with M(central object). 

Remember that v = 2 Pi R/T, plug this in the 1st Eqn:    (4π
2R2 / T2 )
R

=
GMsun
R2

.  

Now rearrange:   
R3

T2
=
GMsun
4π2

.   This is Kepler’s third law. The right side is a 

constant for all planets. Newton has proven, and generalized, Kepler’s third law. 

 

Earth satellites (the moon, communications satellites, whatever) must also satisfy 

R^3/T^2=constant, but with a new constant (use M_earth on the right side now.)  

Conclusion: any satellite in orbit at some radius has a certain, definite, predictable 

period (and thus, velocity), independent of mass.  We’re doing rocket science here! 

 

Example:  Consider low earth orbit (e.g. the shuttle) so  R=R(earth) + a little bit.  

v =
GMearth
R

≈ 8km / sec ≈5mi / sec. Just under 20,000 mi/hr.   

Any slower and the shuttle will not be a circular orbit,  it will fall. Any faster, and it 

will be go to a higher orbit.  The period (time for the shuttle to go around the earth 

once) is about T = 2 Pi R/v = 90 minutes.   

If you could throw a baseball (and have neither friction nor mountains get in the 

way) horizontally at 20,000 mi/hr, it would ALSO be in orbit! ( R is pretty similar 

for the baseball and the shuttle, because R is measured from the earth’s center.) 
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T is often easy to measure. (The period of the earth is one year, the period of the 

moon is 27 days, etc). So you can use Kepler’s third law to deduce R.  For the earth, 

we know R(from the sun) and T: we can figure out the Sun’s mass. Cool! 

When Cavendish measured G in 1798, he used the distance and period of the moon 

to deduce the mass of the earth. Cavendish weighed the earth! (Knowing the weight 

and size of the earth, we could then deduce our average density, and learn e.g. that 

most of the earth is not dirt, but iron...)   

 

Example: Consider a satellite whose orbital period is exactly 24 hours. Think about 

this - the earth rotates once in 24 hours, and in that time the satellite has also run 

around the earth once. From our perspective on the ground, that satellite is at rest 

above us! This is convenient for TV or satellite communication - the satellite is 

always above the same spot. You aim your dish at it and don’t have to keep tracking 

the satellite. We call this geosynchronous orbit..  How high up is such a satellite? 

R3 =
GMearth
4π2

T2 .  Plugging in all the constants, with T=24 hrs, and taking the 

cube root (figure out how to do that on your calculator) I get R=42,000 km. 

This is a very high orbit. Since R_earth = 6,000 km, it is 36,000 km above the 

ground. (Compare to the shuttle, which is only about 250 km up) 

 

Geosynchronous satellites have v = GMearth / Rsat = 3 km/sec, slower than the 

shuttle. The farther out you are in orbit, the slower you go. (Bigger distance, but 

still bigger T.)     Puzzler: Do you think the moon’s speed is larger or smaller than 3 km/sec? 
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Energy considerations. 

Last chapter, we said U(grav)=mgy, but that assumed constant gravity.  

We must really go back to our Ch. 8 formula,   ΔU = −
! 
F ⋅ d " r r0

rf∫ , and use  

F=G M1 M2/r^2, not mg. The dot product has a “cos θ ” in it, as usual. It’s subtle: 

if we’re integrating UP in radius, gravity is DOWN, the angle between F and dr is 

180 degrees, cos θ = -1, so this cancels the - sign in the formula.  

ΔU = +
GM1M2
r2

dr
r0
rf
∫ = GM1M2(−

1
r
)
r0

rf

U(rf ) −U(r0) =GM1M2
1
r0
−
1
rf

$ 

% 
& 

' 

( 
) 

 

From this, we can argue that Ugrav(r)= −GM1M2 / r .       (NOTE: 1/r, not 1/r^2) 

Think about that - sign, it’s there to give back the formula we just derived for Δ U. 

 

This definition of U(r) says the potential energy is zero when r gets very large.  

A reasonable choice: far away objects feel nothing, no force, no potential energy.... 

(You can make other choices, the zero of U(r) is arbitrary, but this one is common.) 

 

According to this formula, any object (closer than infinity) has a negative potential 

energy, meaning you would have to ADD energy to it to move it away to infinity, 

where it’s defined to have zero potential energy.  (Like a ball in the basement, 

which we said has negative potential energy, if we define U=0 at ground level.) 
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Here’s a sketch of the potential energy  

U(r)=-GM1M2/r. 

This graph is called a “potential well”. 

The potential energy is HIGHER (or in this 

case, less negative, same thing)  as you move 

out to larger radius r, which makes sense.  

(As you move away from the earth, your potential energy is higher.)   

I drew it symmetrical to remind you that the variable r is radius, from the center. 

You can head away from the earth in any direction you want, U(r) rises as you go 

off any which way. U(r) depends only on radius: the potential energy 20 feet off the 

ground is the same no matter where around the sphere you are. 

 

Escape velocity:  If you throw a rock straight up it goes up, stops, then comes down. 

Think of energy conservation - total energy is conserved: it starts off all kinetic, 

turns into gravitational potential, then turns back into kinetic on the way down. 

What if you throw it very hard? Can it ever escape, and never return?  

The answer is yes. You need to give it a critical amount of initial speed, called the 

escape velocity, v_esc.   

 

If v0<v_esc, it falls back down. If v0>v_esc, it runs away forever.  

 If v0 =v_esc, then the rock will JUST barely make it off to r=∞ : it will have zero 

energy out there (K=0, U=0, E_tot=0) But energy is always conserved: in this 

critical case, the initial total energy must have also been zero. Let’s write this out: 

 U(r)
 r
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For any object near the surface, Etot,0 = K0 + U0 =
1
2
mv0

2
−
GMearth m
Rearth

.    

If we equate this to E(final)=0 (to find the critical initial, or escape, velocity) 

vesc =
2GMearth
Rearth

. 

m has cancelled out. This is Sqrt[2] times bigger than the low-earth orbital velocity 

we found on p. 5. Only 40% more initial speed will let the shuttle escape earth! 

 

If you throw the rock even harder, it has greater initial energy.  It will escape, and 

still have some positive energy off at infinity, i.e. it will have K>0 far away. 

Graphically, you can think of this like our old roller coaster pictures: 

As always, K+U=E_tot = constant. 

K>0, always. U<0 (for gravity)  

The sum, E_tot,  can be either + or -,  

just depends how much energy you have to start 

with. 

For the situation shown above, the sum is >0, you’re “free”, you will ultimately 

reach infinity with some + KE left over.  

If the sum is negative, you’re “bound”, you will never reach infinity. (That’s the 

case for all of us at the moment, and even the astronauts in the space shuttle.) 

 

 U(r)

 r
 Etot=K+U

 U
 K

 U = - GM m/r
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An object in circular orbit does not have Etot=0. It’s in orbit, it’s not running off to 

infinity. It has Etot<0, it is bound.   (Let's define M=M_earth, m=m_object) 

For objects in circular orbit,  E_tot =K+U= 1
2
mv2 − GMm

R
.  

Using our earlier formula for v(orbital) (see notes, p 5), I find K= GMm/2R.  

(Please try to check this result for yourself)  

That means K=-U/2 (do you see this?) and so 

E_tot = K+U = -U/2 + U = +U/2 = -GMm/2R = -K.   

This is definitely all a little hard to understand at first, but it does make some sense.  

•  E_tot is NEGATIVE, any object in orbit is bound. 

•  K and U are intimately related for circular orbits (because v and R are related).  

•  The faster it goes (bigger K) the more negative E_tot is, that means it has less 

total energy. Yikes! Can that be? Faster means less energy?  Yes, we just saw that 

objects in orbit go faster if they are closer to the earth.  Closer objects are faster. 

They have LESS overall energy (they’re lower down), but have more  KE .  

Remember energy is the sum of K+U. In this case, as you go further out, K goes 

down, U goes up, but U wins (because of a curious factor of 2 in the equations) 

 

All this weirdness is very real. When the space shuttle pilot wants to catch up to a 

satellite, she does NOT hit the gas (i.e. fire rockets directly aft). That would 

increase their energy => move them to a higher orbit. More energy, but less K, so 

they would watch the satellite go below them, and also start to move ahead of them!  

Very strange indeed. (Shuttle pilots need to study a lot of intro physics.) 
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Appendix: U(grav) near the earth. 

Our new formula for gravitational potential energy, U(r)=-GM1M2/r, seems way 

different from the old formula U(h) = mgh.  How can we reconcile them? 

 

If you zoom in on that graph of U(r)=-GM1M2/r, near 

r=R(earth), it will look like a straight line. (Any curve 

looks straight if you zoom in on it). That’s what we did 

before, when we said U(h) = mgh, we were zooming in 

on U(r) near the surface. But, how does it work out quantitatively?    Just let 

r = Re + h , and plug into our formula U(r) = −
GMem
R

, to get 

U = −
GMem
Re + h

= −
GMe

Re (1 +
h
Re
)
m .   

It’s a very useful mathematical fact that 1
1 + ε

≈1 − ε , if ε  is small.  

Here, h/Re is small (that’s the assumption that we’re near the surface: the height is 

small compared to the size of the earth), so the formula becomes 

U ≈ −
GMe
Re

(1 −
h
Re
)m = constant +

GMe
Re
2 hm  

We showed (p.3) that G Me/Re^2 = g, so we have U= constant + mgh.   

The value of the constant is irrelevant. Remember, you can always choose wherever 

you want to call U=0. (Adding a constant to U(r) doesn’t change physics. All you 

care about is Δ U, and our constant cancels out when you subtract)  So the formulas 

look different, but they are in complete agreement if you are near the earth's surface. 

 U(r)
 Re  r

mgh


