Phys1110 Exam 2 Review:

Everything from Exam I!

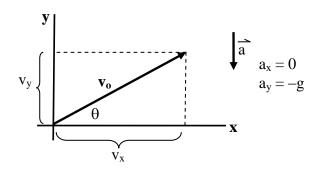
- algebra, trigonometry, unit conversions,
- 1D Motion:

$$v = \frac{\Delta x}{\Delta t}$$
, $a = \frac{\Delta v}{\Delta t}$, graphs, slopes

constant acceleration formulas: $v = v_o + a t$, etc

• Vectors! vector addition, vector components

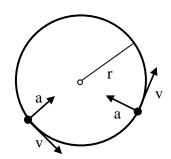
2D Motion:


$$\bullet \quad \vec{a} = \frac{\Delta \vec{v}}{\Delta t} \quad , \quad \vec{v}_1 + \Delta \vec{v} = \vec{v}_2$$

• Projectile Motion

treat x- and y-motions independently

$$a_x = 0 \quad \Rightarrow \quad v_x = constant$$


$$a_y = -g \implies v_y = v_{oy} - g t$$
, etc

• Circular Motion with constant speed v,

$$a = |\vec{a}| \equiv \frac{v^2}{r}$$

 \vec{a} and \vec{F}_{net} are toward the center (centripetal)

Newton's Laws

$$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + ... = \sum_i \vec{F}_i$$

NI:
$$\vec{F}_{net} = 0$$
 \Leftrightarrow $\vec{v} = constant$

NII:
$$\vec{F}_{net} = m \vec{a}$$

NIII:
$$\vec{F}_{AB} = -\vec{F}_{BA}$$

$$F_{BA}$$
 B

New material since Exam I

Force and motion problems with one or more bodies:

- 1) Draw Free-body diagram
- 2) Choose Coordinate system

3)
$$\sum F_x = m \, a_x$$
, $\sum F_y = m \, a_y$

Friction f

• sliding friction: $f = \mu_K N$

• static friction: $0 < f < f_{max} = \mu_S N$

Work and Energy

• work done by force F: $W_F = \vec{F} \cdot \Delta \vec{r}$, work can be (+), (–), or zero

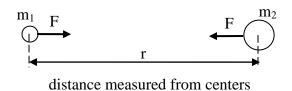
• Hooke's Law: $F_{spring} = -k x$ (k = spring constant)

• work-energy principle: $W_{net} = \Delta KE$

• Definition of PE associated with conservative force F: $\Delta PE_F = -W_F$

• $PE_{grav} = m g h$ $PE_{elastic} = (1/2) k x^2$

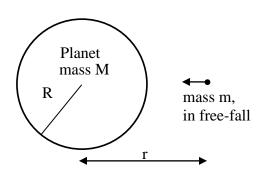
• If no sliding friction, so no thermal energy generated : $E_{mech} = KE + PE = constant$


• If sliding friction, $KE + PE + E_{thermal} = constant$

• Power $P = \frac{\Delta W}{\Delta t}$

Gravity

Newton's Universal Law of gravity:


$$F = G \frac{m_1 m_2}{r^2}$$

Acceleration due to gravity

$$\begin{split} F_{\text{net}} &= m \, a \\ \frac{G \, M \, m}{r^2} &= m \, g \quad \Rightarrow \quad g \; = \; \frac{G \, M}{r^2} \end{split}$$

r = distance to center of planet

Orbits, Kepler's laws

$$PE_{grav} = U(r) = -\frac{GMm}{r}$$

Know how to use conservation of energy to derive escape speed.

To prepare for Exam 2:

- Review Concept Tests, CAPA problems, Tutorial HW. (Read question and try to remember <u>reasoning</u> that gets to the answer)
- When reviewing CAPA problems, know how to derive algebraic formula for answer.
- Prepare your formula sheet.
- Take the practice exam.
- It is no good to memorize answers. You have to understand and remember how you construct the answers.