Phys1110 Exam 3 Review:

Chapters 1 through 7, 12 (see previous reviews)

Chapter 8: Momentum

- $\vec{F}_{net} = \frac{d\vec{p}}{dt} \implies \text{Impulse} = \Delta \vec{p} = \vec{F}_{net} \cdot \Delta t$
- Conservation of Momentum: $\vec{F}_{net} = 0 \implies \vec{p} = constant$

for system isolated from outside forces, $\vec{p}_{tot} = m_1 \vec{v}_1 + m_2 \vec{v}_2 = constant$

• Collisions:

 \vec{p}_{tot} always conserved.

KE is conserved only in perfectly elastic collisions

 \bullet 2D collisions: $p_{x,tot}$ and $p_{y,tot}$ are separately conserved.

Chapter 9, 10: Rotations

Analogy between rotation about a fixed axis and 1D translation along the x-axis:

• $\theta(\text{rads}) = \frac{s}{r}, \quad \omega = \frac{d\theta}{dt}, \quad \alpha = \frac{d\omega}{dt}$ (like x, $v = \frac{dx}{dt}, \quad a = \frac{dv}{dt}$)

•
$$v_{tan} = r \omega$$
 , $a_{tan} = r \alpha$

• torque
$$|\tau| = r \cdot F_{\perp}$$

- moment of inertia I = $\sum_{i} m_{i} r_{i}^{2}$
- $\bullet \quad \tau_{net} \ = \ I \cdot \alpha \qquad (\ like \ F_{net} = m \ a \)$

•
$$\text{KE}_{\text{rotation}} = (1/2) \text{ I } \omega^2$$
 [like $\text{KE}_{\text{trans}} = (1/2) \text{ m } \text{v}^2$]

• Rolling motion: $KE_{tot} = KE_{trans} + KE_{rot} = \frac{1}{2} m v^2 + \frac{1}{2} I \omega^2$

Angular Momentum

• $\vec{\tau} \equiv \vec{r} \times \vec{F}$, $\vec{L} \equiv \vec{r} \times \vec{p}$ (for particle) $\Rightarrow \vec{L} = I \vec{\omega}$ (for rotating object)

•
$$\vec{\tau}_{net} = \frac{dL}{dt}$$
 (like $\vec{F}_{net} = \frac{d\vec{p}}{dt}$)

• Conservation of Angular momentum: If $\bar{\tau}_{net} = 0 \implies \frac{d\bar{L}}{dt} = 0 \implies \bar{L} = \text{constant}$

$$L = constant \implies I_i \omega_i = I_f \omega_f$$

Chapter 11: Static Equilibrium

 $\sum F_x = 0$, $\sum F_y = 0$ and $\sum \tau = 0$ The net torque about *any* axis must be zero.

Chapter 13: Simple Harmonic Motion

- $F_{restore} \propto -x$, $PE \propto x^2$,
- period T independent of amplitude A,
- sinusoidal motion

Differential Equation: $F_{net} = ma = -kx \implies ma = -kx, \quad \frac{d^2x}{dt^2} = -\frac{k}{m}x$ Mass m on spring k, $\omega = \frac{2\pi}{T} = \sqrt{\frac{k}{m}}$ $x(t) = A\cos(\omega t + \phi)$ $v(t) = -A\omega\sin(\omega t + \phi)$. $a(t) = -A\omega^2\cos(\omega t + \phi)$ Conservation of Energy: $\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = E_{tot} \implies E_{tot} = \frac{1}{2}kA^2 = \frac{1}{2}mv_{max}^2$ Simple Pendulum: SHM in limit of small amplitude: $\omega = \sqrt{\frac{g}{L}}$

Remember: to solve any before/after problem in an isolated system, try

Conservation of energy or

Conservation of momentum or

Conservation of angular momentum.

To prepare for Exams:

- Review Concept Tests and CAPA problems. Read question and recall <u>reasoning</u> that gets to the answer. Be able to solve CAPA algebraically.
- Prepare your formula sheet.
- Take the practice exam.
- It is no good to memorize answers. You have to understand and remember how you construct the answers.