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Rotational Motion
We are going to consider the motion of a rigid body about a fixed axis of rotation.  


The angle of rotation is measured in radians:      
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Notice that for a given angle , the ratio s/r is independent of the size of the circle.

Example: How many radians in 180o?    Circumference C = 2 r 
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           rads = 180o,  1 rad = 57.3o 
Angle of a rigid object is measured relative to some reference orientation, just like 1D position x is measured relative to some reference position (the origin).

Angle  is the "rotational position".   Like position x in 1D, rotational position  has a sign convention.  Positive angles are CCW (counter-clockwise). 


Definition of angular velocity:   
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( like 
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In 1D, velocity v has a sign (+ or​ –) depending on direction.  Likewise  has a sign convention, depending on the sense of rotation.


[image: image5]
For rotational motion, there is a relation between tangential velocity v (velocity along the rim) and angular velocity .  
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v  =  r

Definition of angular acceleration :   
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( like 
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  =  rate at which  is changing.

 = constant   (   = 0     (    speed v along rim = constant = r 
Equations for constant :

Recall from Chapter 2:  We defined 
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and then showed that, if a = constant,     
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Now, in Chapter 8, we define 
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So, if  = constant,     
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Same equations, just different symbols.

Example:  Fast spinning wheel with 0 = 50 rad/s   ( about 8 rev/s ).  Apply brake and wheel slows at  = (10 rad/s.  How many revolutions before the wheel stops?  
Use 
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Definition of tangential acceleration atan   =  rate at which speed v along rim is changing
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atan   =   r   

atan is different than the radial or centripetal acceleration   
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ar is due to change in direction of velocity v
atan is due to change in magnitude of velocity, speed v


atan and ar are the tangential and radial components of the acceleration vector a.
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Angular velocity  also sometimes called angular frequency.

Difference between angular velocity  and frequency f:
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T   =  period  =  time for one complete revolution (or cycle or rev)   (
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Units of frequency f  =  rev/s  =  hertz (Hz) .  Units of angular velocity = rad /s = s-1
Example: An old vinyl record disk with radius r = 6 in = 15.2 cm is spinning at 33.3 rpm (revolutions per minute).  

( What is the period T?
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(  period T = 1.80 s

( What is the frequency f ?    f  =  1 / T  =  1 rev / (1.80 s)  =  0.555 Hz

( What is the angular velocity  ?  
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( What is the speed v of a bug hanging on to the rim of the disk? 

 v  =  r w = (15.2 cm)(3.49 s-1)  = 53.0 cm/s
( What is the angular acceleration  of the bug?   = 0 , since  = constant
( What is the magnitude of the acceleration of the bug?  The acceleration has only a radial component ar , since the tangential acceleration atan  =  r   =  0.  

a  =  
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As we shall see, for every quantity in linear (translational) motion, there is an analogous quantity in rotational motion:

Translation
(
Rotation
   x

(
   
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The rotational analogue of force is torque.
Force F causes acceleration a      (       torque causes angular acceleration 

The torque (pronounced "tork") is a kind of "rotational force".   


magnitude of torque:    
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r = "lever arm" = distance from axis of rotation to point of application of force

F( = component of force perpendicular to lever arm


Example: Wheel on a fixed axis:

Notice that only the perpendicular component of the force F will rotate the wheel.  The component of the force parallel to the lever arm (F||)   has no effect on the rotation of the wheel.

If you want to easily rotate an object about an axis, you want a large lever arm r and a large perpendicular force F(:


[image: image34]
Example: Pull on a door handle a distance r = 0.8 m from the hinge with a force of magnitude F = 20 N at an angle  = 30o from the plane of the door, like so:

 = r F( = r F sin  = 
(0.8 m)(20 N)(sin 30o) = 8.0 m(N

[image: image35]
Torque has a sign (+ or ​–) :

Positive torque causes counter-clockwise CCW rotation.

Negative torque causes clockwise (CW) rotation.

If several torques are applied, the net torque causes angular acceleration.
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To see the relation between torque  and angular acceleration  , consider a mass m at the end of light rod of length r, pivoting on an axis like so:


[image: image37]
Apply a force F( to the mass, keeping the force perpendicular to the lever arm r.

acceleration atan  =  r 
Apply Fnet = m a, along the tangential direction:

F(  =  m atan  =  m r 
Multiply both sides by r  ( to get torque in the game ):   r F(  =  (m r 2) 
Define  "moment of inertia" =  I  =  m r 2  


(

  =  I ( 

( like F  =  m ( a )

Can generalize definition of I:

Definition of moment of inertia of an extended object about an axis of rotation:
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Examples:
( 2 small masses on rods of length r:
  

 I = 2 m r2
( A hoop of total mass M, radius R, with axis through the center, has Ihoop  = M R2  
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(since ri = R for all i )
In detail:
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(  A solid disk of mass M, radius R, with axis through the center: 

Idisk  = (1/2) MR2   (hard to show)
Moment of inertia I is a kind of "rotational mass".

Big I   (    hard to get rotating 

( like Big M  (  hard to get moving )


If I is big, need a big torque  to produce angular acceleration according to

 net  =  I ( 

( like Fnet = m a )

Example:  Apply a force F to a pulley consisting of solid disk of radius R, mass M.   = ?
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Rotational Kinetic Energy

How much KE in a rotating object?  Answer:   
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(like 
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How much KE in a rolling wheel?
 The formula v = r   is true for a wheel spinning about a fixed axis or rolling on the ground.


To see why, look at situation from the bicyclist's point of view:


_________________________*______________________________
Rolling KE: Rolling wheel simultaneously translating and rotating:
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Conservation of energy problems with rolling motion:
A sphere, a hoop, and a cylinder, each with mass M and radius R, all start from rest at the top of an inclined plane and roll down to the bottom.  Which object reaches the bottom first?

[image: image49]
Apply Conservation of Energy to determine vfinal.  Largest vfinal will be the winner.
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Value of moment of inertia I depends on the shape of the rolling thing:

Idisk = (1/2)M R2 ,  Ihoop = M R2 ,  Isphere = (2 / 5)M R2   (Computing the coefficient can be messy.)

Let's consider a disk, with I = (1/2)MR2.  For the disk, the rotational KE is
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Notice that final speed does not depend on M or R.  

Let's compare to final speed of a mass M, sliding down the ramp (no rolling, no friction).
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Sliding mass goes faster than rolling disk.  Why?

As the mass descends, PE is converted into KE.  With a rolling object, KEtot = KEtrans + KErot , so some of the PE is converted into KErot  and less energy is left over for KEtrans.  A smaller KEtrans means slower speed (since KEtrans = (1/2) M v2 ).  So rolling object goes slower than sliding object, because with rolling object some of the energy gets "tied up" in rotation, and less is available for translation.

Comparing rolling objects:  Ihoop  >  Idisk  >   Isphere  (  Hoop has biggest KErot  =  (1/2) I 2, ( hoop ends up with smallest KEtrans (  hoop rolls down slowest, sphere rolls down fastest.

Angular Momentum  = "Spin"

Definition of angular momentum of a spinning object:  L ( I 
( like p = m v )
If something has a big moment of inertia I and is spinning fast (big ), then it has a big "spin", big angular momentum. Angular momentum is a very useful concept, because angular momentum is conserved.

Conservation of Angular Momentum: If a system is isolated from external torques, then its total angular momentum L is constant.

ext = 0  (  Ltot = constant 

( like Fext = 0  (  ptot = constant )

Here is a plausibility argument for conservation of angular momentum (proof is a bit too messy):  

First, we argue that 
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 ( This turns out to be true even if I ( constant )

So now 
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It turns out that only 4 things are conserved:

· Energy

· Linear momentum p

· Angular momentum L

· Charge q

Conservation of Angular Momentum is very useful for analyzing the motion of spinning objects isolated from external torques  — like a skater or a spinning star.

If  ext = 0 , then  L = I = constant.  If I decreases,  must increase to keep L = constant.

Example: spinning skater.


[image: image59]
Example: rotation of collapsing star.  A star shines by converting hydrogen (H) into helium (He) in a nuclear reaction.  When the H is used up, the nuclear fire stops, and gravity causes the star to collapse inward.


[image: image60]
As the star collapses (pulls its arms in), the star rotates faster and faster.  Star radius can get much smaller: Ri ( 1 million miles  (  Rf ( 30 miles
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If Ri >> Rf,  then Ti >>>>Tf .  

The sun rotates once every 27 days.  "Neutron stars" with diameter of about 30 miles typically rotates 100 time per second.
Let's review the correspondence between translational and rotational motion
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      M
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I = ( m r2

Fnet = M a
(
net  = I 


 KEtrans = (1/2)M v2
(
KErot = (1/2 ) I 2

p = m v
(
L = I 
       Fnet = p / t
(
net = L / t

If Fext  = 0, ptot = constant 
(
If ext  = 0, Ltot = constant 
Appendix:

Moments of Inertia for some shapes:
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Another example: a Pulley
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