Thermal Properties

Temperature

What is temperature? It is a measure of the amount of "atomic jiggling". When something is hot (has a high temperature), its atoms are jiggling a lot. When it is cold (has a low temperature), its

atoms are jiggling little.
As temperature falls, atoms jiggle less and less. At "absolute zero" T $=0 \mathrm{~K}$, all atoms stop, no motion.

Temperature $\mathrm{T}=$ measure of energy per atom
Various temperature scales:

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{F}}=\frac{9}{5} \mathrm{~T}_{\mathrm{C}}+32 & { }^{\mathrm{o}} \mathrm{~F}=\text { Fahrenheit } \\
\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273.15 & { }^{\circ} \mathrm{C}=\text { Celsius } \\
\mathrm{K}=\text { Kelvin }
\end{array}
$$

$1{ }^{\circ} \mathrm{C}=1 \mathrm{~K}, \quad 1{ }^{\circ} \mathrm{F}=(5 / 9) \mathrm{C}^{0}$
room temperature $=72^{\circ} \mathrm{F}=22^{\circ} \mathrm{C}=295 \mathrm{~K} \approx 300 \mathrm{~K}$
absolute zero $=0 \mathrm{~K}=-273^{\circ} \mathrm{C}=-459^{\circ} \mathrm{F}$
[In the ideal gas law, $\mathrm{p} V=\mathrm{Nk} \mathrm{T}=\mathrm{n} \mathrm{R} \mathrm{T}(\mathrm{N}=$ \#molecules, $\mathrm{n}=$ \#moles), must always use T in Kelvin.]

Thermal energy $\mathrm{U}=$ total energy of all atoms (random motion)
Heat $\mathbf{Q}=$ amount of thermal energy transferred to a body.
[Q] = energy, SI unit of heat = joule
popular unit of energy = 1 calorie $(\mathrm{cal})=4.184 \mathrm{~J} \quad$ Notice calorie spelled with a small "c".
$1 \mathrm{cal}=$ energy to raise T of 1 gram of water by $1^{\circ} \mathrm{C}$
$1 \mathrm{kcal}=1000 \mathrm{cal}=1 \mathrm{Cal}=4184 \mathrm{~J}=$ "food Calorie" Notice Calorie spelled with a big "C"
[Some primitive cultures use the BTU ("British Thermal Unit) = energy to raise a pound of water by $1^{\circ} \mathrm{F}$. $1 \mathrm{BTU}=1060 \mathrm{~J}$]

Definition: heat capacity of an object $=$ heat added per temperature rise $(\mathrm{J} / \mathrm{K})$
Definition: specific heat (or specific heat capacity) of a material $=\mathrm{c}=$ amount of heat added per unit mass per degree Celsius rise in temperature. If we have a mass m of some material, and we add an amount of heat $\Delta \mathrm{Q}$ and that produces a temperature rise of $\Delta \mathrm{T}$, then specific heat is defined as..

$$
\mathrm{c}=\frac{\Delta \mathrm{Q}}{\mathrm{~m} \Delta \mathrm{~T}} \quad[\mathrm{c}]=\mathrm{J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right) \quad \text { (SI units) }
$$

Usually write the equation as $\Delta \mathrm{Q}=\mathrm{m} \mathrm{c} \Delta \mathrm{T}$
This equation says that if I have a mass m of some material with specific heat c, and I want to raise its temperature by ΔT, then I have to add an amount of heat $\Delta \mathrm{Q}=\mathrm{m} \mathrm{c} \Delta \mathrm{T}$.

$$
c_{\text {water }}=1 \frac{\mathrm{cal}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}=1 \frac{\mathrm{kcal}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}=4186 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}
$$

Example: Heat your mug of coffee (which is mostly water) from room temperature to near boiling: $\mathrm{m}=200 \mathrm{~g}, \mathrm{~T}=20^{\circ} \mathrm{C} \rightarrow 90^{\circ} \mathrm{C}$.
$\Delta \mathrm{Q}=\mathrm{m} \mathrm{c} \Delta \mathrm{T}=(200 \mathrm{~g})\left(1 \frac{\mathrm{cal}}{\mathrm{g} \cdot{ }^{\circ} \mathrm{C}}\right)\left(70^{\circ} \mathrm{C}\right)=14000 \mathrm{cal}=14.0 \mathrm{kcal} \times\left(\frac{4186 \mathrm{~J}}{\mathrm{kcal}}\right)=58600 \mathrm{~J}$
Different materials have different specific heats:

material	$\mathrm{C}(\mathrm{cal} / \mathrm{g} \cdot \mathrm{C})$
water	1.00
ice	0.53
aluminum	0.22
dry air	0.24
iron	0.11

(notice that liquid water has a high specific heat compared to other materials)

Example: Suppose we have 2 objects, labeled A and B (water and steel, say), with object A hotter than object B. They initially have temperatures T_{A} and T_{B}.

Bring A and B together, allowing them to exchange heat with each other, but not with the outside world \Rightarrow A will cool, B will heat and both will reach same final temperature T_{f}.

Object A will lose heat: $\Delta \mathrm{Q}_{\mathrm{A}}<0$
Object B will gain heat: $\Delta \mathrm{Q}_{\mathrm{B}}>0$

$$
\begin{aligned}
\Delta \mathrm{Q}_{\mathrm{A}} & =-\Delta \mathrm{Q}_{\mathrm{B}} \\
\mathrm{~m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}} \Delta \mathrm{~T}_{\mathrm{A}} & =-\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}} \Delta \mathrm{~T}_{\mathrm{B}} \\
\mathrm{~m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{A}}\right) & =-\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{B}}\right) \\
\mathrm{T}_{\mathrm{f}}\left(\mathrm{~m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}}\right) & =\mathrm{m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}} \mathrm{~T}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}} \mathrm{~T}_{\mathrm{B}}
\end{aligned}
$$

...solve for T_{f} (does not matter if T is in Celsius or Kelvin, but must be consistent).

Phase changes.

phase = solid, liquid, or gas (S, L, or G)
$\mathrm{S} \leftrightarrow \mathrm{L}$ (freezing/melting) or $\mathrm{L} \leftrightarrow \mathrm{G}$ (boiling/condensing) or $\mathrm{S} \leftrightarrow \mathrm{G}$ (sublimation)

Solid water (ice) can have any temperature in the range $-273^{\circ} \mathrm{C}<\mathrm{T} \leq 0^{\circ} \mathrm{C}$ Liquid water can have any temperature in the range $0^{\circ} \mathrm{C} \leq \mathrm{T}<100^{\circ} \mathrm{C}$

Can have a mixture of ice and water both at $\mathrm{T}=0^{\circ} \mathrm{C}$

ice + water

If heat is added to the mixture at $\mathrm{T}=0^{\circ} \mathrm{C}$, some ice melts, but T stays at $0^{\circ} \mathrm{C}$ until all the ice has melted.

Latent heat or heat of transformation = heat required to cause phase change
Latent heat of solid/liquid trans. $\mathrm{L}_{\text {SL }}=$ heat needed to melt 1 g of ice at $0^{\circ} \mathrm{C}$.

$$
\mathrm{L}_{\text {SL }}(\text { water })=79.7 \mathrm{cal} / \mathrm{g}
$$

Requires 80 cal to melt a single gram of ice, but only 1 cal to raise temp of the liquid by $1^{\circ} \mathrm{C}$.

Example: How much heat required to change 100 g of ice at $\mathrm{T}=-10^{\circ} \mathrm{C}$ into liquid water at $\mathrm{T}=$ $+10^{\circ} \mathrm{C}$?

1. Heat ice to $\mathrm{T}=0^{\circ} \mathrm{C} \quad \Delta \mathrm{Q}_{1}=\mathrm{m} \mathrm{c}_{\text {ice }} \Delta \mathrm{T}$
2. Melt ice at $\mathrm{T}=0^{\circ} \mathrm{C} \quad \Delta \mathrm{Q}_{2}=\mathrm{m} \mathrm{L}_{\mathrm{f}}$
3. Heat water to $\mathrm{T}_{\text {final }} \quad \Delta \mathrm{Q}_{3}=\mathrm{m}_{\mathrm{w} \text { water }} \Delta \mathrm{T}$

$$
\begin{aligned}
\Delta \mathrm{Q}_{\text {total }} & =100(0.5)(10)+100(80)+100(1)(10) \\
& =\underset{(\text { heat ice })}{500 \mathrm{cal}}+\underset{(\text { melt ice })}{8000 \mathrm{cal}}+\underset{\text { (heat water) }}{1000 \mathrm{cal}}=9500 \mathrm{cal}
\end{aligned}
$$

Note that most of the energy went into melting the ice because of the large latent heat of water/ice transformation. This is good for people in Boulder. If L_{f} was not large, we would have big floods every spring, because all the snow would suddenly melt as soon as the temperature rose above melting.
$\mathrm{L}_{\mathrm{LG}}=$ heat of vaporization $=$ heat needed to transform 1 g of liquid water into vapor at $100^{\circ} \mathrm{C}$. $\mathrm{L}_{\mathrm{LG}}($ water $)=539 \mathrm{cal}$ This is a very large amount of heat \Rightarrow very expensive to distill water.

Example: Tiger, tiger, burning bright... In the 1956 science fiction movie, Forbidden Planet, Captain Adams (played by Leslie Nielsen) vaporizes a tiger with one shot from his "blaster pistol". This tiger is only about 6 meters away from the captain. About how much energy is required to vaporize a tiger? Is it a good idea to release this much energy this close to you?

A tiger is mostly water and has a mass of about $m=250 \mathrm{~kg}$ (three time the mass of a man). In order to make the tiger boil away, you have to first raise the temperature of the tiger (water) from $\mathrm{T}=30^{\circ} \mathrm{C}$ (healthy tiger temp.) to $100^{\circ} \mathrm{C}$ (boiling). Then you have to evaporate the water at $\mathrm{T}=$ $100^{\circ} \mathrm{C}$. For each gram of tiger, the first step requires 70 cal ($=\mathrm{m} \mathrm{c} \Delta \mathrm{T}$), and the second step requires $539 \mathrm{cal}\left(=m L_{L G}\right)$, so let's say, roughly, at least 600 cal is needed per gram.

$$
\mathrm{Q}=250 \mathrm{~kg} \times \frac{1000 \mathrm{~g}}{\mathrm{~kg}} \times \frac{600 \mathrm{cal}}{\mathrm{~g}} \times \frac{4 \mathrm{~J}}{\mathrm{cal}}=6 \times 10^{8} \mathrm{~J} \quad(\text { just a rough calculation so } 1 \mathrm{cal} \approx 4 \mathrm{~J} .)
$$

How much energy is this $6 \times 10^{8} \mathrm{~J}$? This energy is about $200 \mathrm{~kW} \cdot \mathrm{hr}$. [One kilowatt•hour is 1000W (ten 100W light bulbs on) for 1 hour.] The power company charges about $\$ 20$ for this much energy (at 10 cents per $\mathrm{kW} \cdot \mathrm{hr}$). This energy is also the energy content of about 5 gallons of gasoline or about 300 sticks of dynamite. Releasing this much energy all at once would kill everyone nearby and make a huge, choking cloud of tiger smoke.

Heat Transfer

There are three (and only three) ways to transfer heat.

1) Conduction : heat transfer by direct touch
2) Convection : heat transfer by bulk movement of hot matter
3) Radiation : heat transfer by light (electromagnetic radiation)
