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Vectors   
A vector is a mathematical object consisting of a magnitude (size) and a direction.
A vector can be represented graphically by an arrow: 

Vector quantity written in bold (A) or with a little arrow overhead (
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A (no arrow) = 
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 = magnitude of the vector = positive number

Examples of vector quantities: position, velocity, acceleration, force, electric field.


If two vectors have the same direction and the same magnitude, then they are the same vector

Vector = magnitude + direction (not location)


In 2D, need 2 numbers to specify a vector 
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: A and angle 
Addition of Vectors
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Vector addition is commutative: 
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Graphical addition: "tip-to-tail" or "tail-to-head" method:


Addition by "parallelogram method" (same result as tip-to-tail method)

Can add lots of vectors (like steps in a treasure map: "take 20 steps east, then 15 steps northwest, then…")
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Negative of vector (same size, opposite direction):
Multiplication of a vector by a number:

Components of a Vector
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Ax =   A cos    =  x-component
Ay =   A sin   =  y-component
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Components of a vector can be positive or negative.  

(
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 is positive always, but Ax and Ay can be + or ( )

Think of the Ax​ as the "shadow" or "projection" of  the vector A cast onto the x-axis by a distant light source directly "overhead" in the direction of  +y.

Components are numbers, not vectors.  They do not have a direction, but they do have a sign, a (+) or (–) sign.  If the "shadow" onto the x-axis points in the +x direction, then Ax is positive.

Here, Bx is negative, because the x-projection is along the (x direction.

By is positive, because the y-projection is along the +y direction.


Can specify a vector (in 2D) in two ways: by giving A,  OR  Ax, Ay
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Example of vector math:  Ax = +2,  Ay = (3   What is the magnitude A, and angle with the x-axis?
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Vector Addition by Components:



[image: image15.wmf]xxx

yyy

CAB

CAB

CAB

=+Þ

=+

=+

rr

r


Vector subtraction:
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(  "substract" means "add negative of"


Graphically:  
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Subtraction by components:
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Position, Velocity, and Acceleration Vectors

Velocity is a vector quantity; it has a magnitude, called the speed, and a direction, which is the direction of motion.  Position is also a vector quantity.  Huh?   What do we mean by the magnitude and direction of position?  How can position have a direction?  

In order to specify the position of something, we must give its location in some coordinate system, that is, its location relative to some origin. We define the position vector r as the vector which stretches from the origin of our coordinate system to the location of the object.  The x- and y-components of the position vector are simply the x and y coordinates of the position.  Notice that that the position vector depends on the coordinate system that we have chosen.

If the object is moving, the position vector is a function of time r = r(t). Consider the position vector at two different times t1 and t2, separated by a short time interval t = t2 – t1. (t  is read "delta-t")  The position vector is initially r1, and a short time later it is r2.   The change in position during the interval t  is the vector r = r2 – r1.  Notice that, although r1 and r2  depend on the choice of the origin, the change in position r = r2 – r1  is independent of choice of origin.  Also, notice that change in something = final something – initial something.   

In 2D or 3D, we define the velocity vector as 
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.   As t gets smaller and smaller, r2 is getting closer and closer to r1, and r is becoming tangent to the path of the object.  Note that the velocity v is in the same direction as the infinitesimal r , since the vector v is a positive number (1/t) times the vector r.  Therefore, the velocity vector, like the infinitesimal r, is always tangent to the trajectory of the object.

The vector equation 
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   has x- and y-components.   The component equations are  
[image: image23.wmf]xy

t0t0

xy

vlim,vlim

tt

D®D®

DD

==

DD

.    Any vector equation, like 
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 ,  is short-hand notation for 2 or 3 component equations: 
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The change in velocity between two times t1 and t2 is v = v2 – v1  (remember that change is always final minus initial).  We define the acceleration vector as 
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.  As we mentioned in the chapter on 1D motion, the direction of the acceleration is the same as the direction of v.  The direction of the acceleration is NOT the direction of the velocity, it is the “direction towards which the velocity is tending”, that is, the direction of v.  

We will get more experience thinking about the velocity and acceleration vectors in the next few chapters.
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Proof by diagram:
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