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3.1 Center of mass — Triangular plate
Given: Pollock — Spring 2011

A flat plate of mass M has a triangular shape with the dimensions shown in Fig.2. The plate has a
uniform density ( mass per unit area in this case).

(a) Based on your physical and mathematical intuitions, without calculating, where do you predict
the center of mass is, and why?

(b) Now mathematically determine its center of mass coordinates. Does your answer match your
intuitions from part a? Briefly, explain (or reconcile!)
Given: Marino — Fall 2011

A thin metal plate of uniform density, is shaped like an equilateral triangle, as shown below. Find the
location (z,y) of the center of mass of the plate. You must find the answer using calculus.

Y

Given: Pollock — Spring 2012
You have a flat plate (of uniform mass density, which is mass per unit area in this case) of total mass

M. Tt is in the shape of a right triangle, with legs a and b (c is the hypotenuse).

a) Draw your triangle, choosing a coordinate system origin and orientation to make it as easy as
D tri 1 hoosi dinat t igi d orientation t ke it
possible for you to find the center of mass. Based on your physical and mathematical intuitions,
without calculating, where do you predict the center of mass is, and why?

(b) Now mathematically determine its center of mass coordinates. Does your answer match your
intuitions from part a? Briefly, explain (or reconcile!)
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3.2

“Walking” on water
Given: Pollock — Spring 2011, Spring 2012

3m I

Steve Jr. (mass my) is standing at one edge of a 4 m long canoe (mass M) (See Fig. 1). He observes
a turtle on top of a rock standing close to the other edge of the canoe. Steve wants to catch the turtle
and starts walking towards it. Ignoring water friction:

(a) Qualitatively describe the motion of the system (canoe+ Steve) as Steve walks forward. If initially
the canoe is 3m away from the dock, where is Steve with respect to the dock when he reaches
the other end of the canoe? (We want a formula in terms of mg, M., and the given starting
dimensions)

(b) If my = 40 Kg and M. = 30 Kg and Steve can stretch his arm 1m away the canoe edge, can he
catch the turtle? (Also, what happens in the limit of a very light canoe? A very massive canoe?)

Given: Marino — Fall 2011

You (mass=75 kg) are standing still at one end of a log that is floating at rest in a lake. Now you run
to the other end of the log at a speed of 1 m/s and stop. If the log has a mass of 500 kg and a length
of 5 m, how far does the center of the log move with respect to the shore? You may assume that there
is no friction between the log and the water.
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3.3 Lost in Space
Given: Marino — Fall 2011

An astronaut has drifted too far away from the space shuttle while attempting to repair the Hubble
Space telescope. She realizes that the orbiter is moving away from her at 3 m/s. She and her space
suit have a mass of 90 kg. On her back is a 10 kg jetpack which consists of an 8 kg holding tank filled
with 2 kg of pressurized gas. She is able to use the gas to propel herself directly towards to the orbiter.
The gas exits the tank at a uniform rate with a constant velocity of 100 m/s, relative to the tank (and
her).

(a) (1 point) After the tank has been emptied, what is her velocity? Will she be able to catch up
with the orbiter with that velocity?

(b) (1 point) With what velocity (in her frame of reference!) will she have to throw the empty tank
away to reach the orbiter?
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3.4 Rocket dynamics (with drag!)
Given: Marino — Fall 2011

Consider a rocket of mass (with an initial mass mg) that travels vertically. The rocket ejects fuel at a
constant velocity (ves) relative to the rocket’s motion.

(a)

If this rocket is designed such that the rate of fuel ejection is constant (i.e., rh = —k), show that
the equation of motion for this rocket is,

mE = KUz — Mg

Solve this differential equation for v(t) using separation of variables. Recall that m is not a
constant, but that m = mg — kt. You will assume that g doesn’t change appreciably.

Describe what happens to the rocket if the value of kv, was smaller than the initial value of mg.
Show for a rocket that starts from rest at y = 0, the resulting expression for y(t) is

1 MUey mo
Sgt? - 1 (7)
29 k . m

Y(t) = Vext —

(Hint: The following integral might be useful: [ In(z) = zin(x) — x + const. If you are interested,
you can integrate In(x) by parts to obtain this result.)

Assume that the rocket burns fuel for 200 seconds. Use Mathematica to plot the velocity and
position of the rocket as a function of time (up to 200 sec). Let the initial mass of the rocket be 2
x10° kg, the rate of mass ejection be 8333.33 kg/s and the exhaust speed be 3000 m/s. Obviously,
the rocket starts from rest. How high is the rocket after 200 seconds? What does this tell you
about your assumption about g in part (a)?

Real rockets experience air drag. Due to their size and typical speeds, the air resistance is best
modeled as quadratic. Consider your plots in part (d). Describe how your plots might change by
adding bv? drag to the model.

Using Mathematica numerically solve the equation of motion which includes air drag. Use the
same parameter values as in part (d). Assume the drag coefficient b for the rocket is 0.80. Plot
both the velocity and vertical position of the rocket as functions of time. Compare these plots to
your predictions in part (e) and your analytic results in part (d).
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3.5 Colliding atoms
Given: Pollock — Spring 2011

A collision between two bodies is defined to be elastic if the total kinetic energy before and after the
collision is the same. Consider an elastic collision between two identical atoms one which is initially at
rest v = 0 and the other is moving with velocity #; # 0. Denoting ¥} , the corresponding velocities
after the collision

(a) Write down the vector equations representing the conservation of momentum and the scalar
equation representing the conservation of kinetic energy in an elastic collision.

(b) Use this to prove that the angle between ] and 4 is /2. Think of a situation where this fact
might prove to be useful or relevant.
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3.6 Multi-stage rockets
Given: Pollock — Spring 2011

A rocket having two or more engines, stacked one on top of another and firing in succession is called a
multi-stage rocket. Normally each stage is jettisoned after completing its firing. The reason rocketeers
stage models is to increase the final sped (and thus, altitude) of the uppermost stage. This is accom-
plished by dropping unneeded mass throughout the burn so the top stage can be very light and coast
a long way upward. Let us understand better the advantages of a multi-stage rocket. Imagine that the
rocket carries 70% of its initial mass as fuel (i.e. the mass of all the fuel is 0.7my)

(a) What is the rocket final speed accelerating from rest in free space, if it burns its fuel in a single
stage? Express your answer in terms of v,

(b) Now suppose instead that it burns the fuel in two stages like this: In the first stage it burns a
mass 0.35mg of fuel. It then jettisons the (empty) first stage fuel tank. Let’s assume this empty
tank has a mass of 0.1mg. It then burns the remaining 0.35mg of fuel. (So, we’ve burned the same
total amount of fuel as part a, right? We simply jettisoned an empty fuel-stage in the middle)
Find the final speed in this case, assuming the same value of v., as in part a. Compare and
discuss briefly.
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3.7 Hovering rockets
Given: Pollock — Spring 2011

Taylor works out the rocket equation in deep space. But at launch, obviously you cannot neglect
gravity - the net external force, dP/dt, is no longer zero.

(a) Follow Taylor’s derivation on page 86, and fix it up, getting to Eq 3.6 and find the “correction”
term you need to add to include gravity. Assuming that v, is a fixed (constant) number,
and assuming that you want the rocket to simply “hover” above the ground (rather than really
launching), solve the ODE you get to find rocket mass as a function of time. (Does dm/dt turn
out to be a constant? Explain physically why your answer to that question makes sense)

(b) If your payload (the mass that is left over after all the fuel is gone) is roughly e=2 = .135 of the
initial mass, how long can you hover? Given the (very optimistic!) value of ve,n, = 2000m/s,
comment on why we don’t all commute around with jetpacks.
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3.8 Rocket with linear drag
Given: Pollock — Spring 2011

So far we have considered the ideal case of a rocket without drag. In real life, however, drag can be an

important limitation and must be considered. Imagine the situation of a linear drag f = —bv acting
on the rocket body only (with no other external forces, so we’re back to the “gravity free” case of deep
space)

(a)
(b)

Once again, the net external force, dP/dt, is not zero. Follow Taylor’s derivation on page 86, and
fix it up, getting to Eq 3.6 and find the “correction” term you need to add, caused by drag.

Now solve your ODE, to show that if the rocket starts from rest and ejects a mass at constant

mo

A
rate 1 = —k (with k a given constant), the its speed is given by v = %vez {1 — (ﬂ) ]

What is A in terms of k, b, v, and mg.
HINT: since dm/dt=-k, you can eliminate any stray “dt” terms that appear in your ODE.

What is the corresponding speed if we ignore drag? Show that the eq’n above reproduces the
speed for the drag free case if b — 0 (see hint below). Calculate the first non-vanishing correction
introduced by a finite drag to the speed. Does the sign of your correction make physical sense?
Briefly, discuss.

X

HINT: A trick that may be helpful here: you can always rewrite the function f(z) = ¢* as
f(.%') _ 6ln(cw) _ eacln(c)_
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3.9 Rocket science!
Given: Pollock — Spring 2012

(a)

A rocket having two or more engines, stacked one on top of another and firing in succession is
called a multi-stage rocket. Normally each stage is jettisoned after completing its firing. The
reason rocketeers stage models is to increase the final sped (and thus, altitude) of the uppermost
stage. They do this by dropping unneeded mass throughout the burn so the top stage can be
very light and coast a long way upward. Let’s examine the advantages of a multi-stage rocket.
Suppose the rocket carries 80% of its initial mass as fuel (i.e. the mass of all the fuel is 0.8my)
What is the rocket final speed accelerating from rest in free space, if it burns its fuel in a single
stage? Express your answer in terms of v.,.

Now suppose instead that it burns the fuel in two stages like this: In the first stage it burns a
mass 0.4mg of fuel. Tt then jettisons the (empty) first stage fuel tank. Assume this empty tank
has a mass of 0.1mg. It then burns the remaining 0.40mg of fuel. (So, we’ve burned the same total
amount of fuel as part a, right? We simply jettisoned an empty fuel-stage in the middle) Find
the final speed in this case, assuming the same value of ve, as in part a. Compare and discuss!

Taylor worked out the rocket equation in deep space. But at launch, you can’t neglect gravity -
the net external force, dP/dt, is no longer zero! Follow Taylor’s derivation on p. 86, and fix it up,
getting to Eq 3.6 and find the “correction” term you need to add to include gravity. Assuming
that vegp is a fixed (constant) number, and assuming that you want the rocket to simply “hover”
above the ground (rather than really launching), solve the ODE you get to find rocket mass as a
function of time. (Does dm/dt turn out to be a constant? Explain physically why your answer to
that question makes sense)

If your payload (the mass that is left over after all the fuel is gone) is roughly e=2 = .135 of the
initial mass, how long can you hover? Given the (very optimistic!) value of verp = 2000m/s,
comment on why we don’t all commute around with jetpacks.

The rest of this question is pure EXTRA CREDIT

So far we have considered the ideal case of a rocket without drag. In real life, however, drag can
be an important limitation. Imagine the situation of a linear drag f = —b¥ acting on the rocket
body only (with no other external forces, so we're back to the “gravity free” case of deep space.)
Once again, the net external force, dP/dt, is not zero. Follow Taylor’s derivation on page 86,
and fix it up, getting to Eq 3.6 and find the “correction” term you need to add, caused by drag.
Solve your ODE, to show that if the rocket starts from rest and ejects a mass at constant rate

A
m = —k (with k a given constant), its speed is given by v = %vem [1 — (ﬂ) ] What is A in

mo
terms of k, b, ve,, and mg? Alternatively, if you’d rather not do the integral analytically, put your
ODE into Mathematica, pick some reasonable numbers (see my lecture notes) and simply plot v
as function of m!

HINT: since dm/dt=-k, you can eliminate any stray “dt” terms that appear in your ODE.

If you want yet another 2 points of extra credit and more practice with Taylor expansions:
what is the corresponding speed if we ignore drag? Show that the equation you got reproduces the
speed for the drag free case if b — 0 (see hint below). Calculate the first non-vanishing correction
introduced by a finite drag to the speed. Does the sign of your correction make physical sense?
Briefly, discuss.

HIN(T) A helpful bit of math: you can always rewrite the function f(z) = ¢ as f(z) = ™) =
e In(c .
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3.10 Mulder and Scully investigate a crash
Given: Pollock — Spring 2011

Two FBI agents (let’s call them Mulder and Scully) are investigating the wreckage of the spaceship is
in three large pieces around a northern Colorado town. One piece (mass = 300 kg) of the spaceship
landed 6.0 km due north of the center of town. Another piece (mass = 1000 kg) landed 1.6 km to the
southeast (36 degrees south of east) of the center of town. The last piece (mass = 400 kg) landed 4.0
km to the southwest (65 degrees south of west) of the center of town. There are no more pieces of the
spaceship. The Air Force, which was watching the spaceship on its radar, claims it was moving with
a constant speed of 5 m/s to the east at a height of 1.96 km. It was 100 m west of the center of town
when the spaceship spontaneously exploded and the pieces fell to the ground. There is also evidence
that none of the pieces acquired appreciable vertical velocities immediately after the explosion. Agents
Mulder and Scully think a missile hit it. Are the fragments consistent with the spaceship exploding
spontaneously? If not, can you tell what direction the missile came from?
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