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6.1 Properties of harmonic oscillator phase space plots

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/Phase-DHM/HWPhase-DHM.pdf

Given: Marino – Fall 2011, Pollock – Spring 2011

Consider the phase space plots (A, B, and C) shown below.

(a) (0.5 points) Could all three plots correspond to the same simple harmonic oscillator (i.e., same
mass and same spring constant)? Explain why or why not.

(b) (0.5 points) Which pair of plots could be used to show the effect of keeping the total energy
constant but increasing the mass (while keeping the spring constant fixed)? Clearly indicate
which plot would correspond to the smaller mass. Explain without performing any calculations.

(c) (0.5 points) Suppose that plots A and C correspond to systems with springs with the same spring
constant, but different masses. Do these two systems have the same total energy? If not, which
one has more total energy? Explain how you can tell.

(d) (0.5 points) Suppose that in the diagram each division along the position axis corresponds to 0.1
m; along the velocity axis, 0.10 m/s. What is the period of the oscillator shown by path B?
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6.2 Limits of the SHO approximation

Given: Marino – Fall 2011

We often consider the simple pendulum to be an example of simple harmonic motion. In this problem
will will see how accurate this is.

(a) (0.5 points) Imagine a vertical pendulum of length l and mass m. By considering the forces on
the pendulum and applying Newton’s second law, obtain differential equation for the forces on
the pendulum in terms of θ, the angle with respect to the vertical axis. (Hint: It might be easiest
to work in polar coordinates.)

(b) (0.5 points) Show that in the limit where θ is small that you obtain a second-order linear differential
equation with constant coefficients. What is the general solution to this equation?

(c) (0.5 points) Consider m=1 kg, and l=1 m. If the pendulum is released at rest at t = 0 from
θ=0.05 radians, what is the particular solution for θ(t) in your expression from part b? What is
the period of this solution?

(d) (0.25 points) If instead the initial condition is that θ=1.25 radians at t = 0, what happens to the
period of the motion?

(e) (0.5 points) Now use Mathematica to solve the exact equation that you found in part a (keeping
the sin(θ) in the expression) for the case where the pendulum is released from rest at t = 0 from
θ=0.05 radians. Make sure that you figure out how to apply initial conditions. Is there an exact
solution if you use DSolve or do you have to use NDSolve?

(f) (0.5 points) Make a plot of the solution. Now use the FindRoot command to figure our where
the solution is zero.1 (You should have some idea of where to look for the roots from the plot
that you made.) Use the locations of two roots to determine the period. How does this compare
the to the period of the approximate small angle solution found above in part c?

(g) (0.5 points) Now use Mathematica to determine a numerical solution for the case where the
pendulum is released from rest at t = 0 from θ=1.25 radians. Plot the solution. Once again, use
the FindRoot command to determine the locations of two roots to determine the period. How
does this compare to the case where it was released from θ = 0.05 in part f?

(h) (0.25 points) Based on these results, what can you say about how well simple harmonic motion
approximates the behavior of a pendulum?

1For a sample Mathematica notebook that solves a second-order ODE and uses the FindRoot function, please look at
“Another ND Solve Example” on CULearn, in the Mathematica Examples folder. You might find this to be a useful starting
point.
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6.3 2D non-isotropic oscillator with commensurate natural frequencies

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/SHM-2D/HWH2D.pdf

Given: Marino – Fall 2011, Pollock – Spring 2011, Spring 2012

Consider the motion of a two-dimensional non-isotropic oscillator, in which the spring constant in x
direction (k1) is not equal to the spring constant in the y direction (k2). Each trajectory below depicts
the possible motion of a unique non-isotropic oscillator. All three oscillators, share the property that
the angular frequencies ω1 and ω2 for the motions along the x- and y-axes are commensurate, i.e., that
the angular frequencies satisfy the following relationship: ω1

n1
= ω2

n2
, where n1 and n2 are integers. For

each case below, (i) determine whether ω1 is greater than, less than, or equal to ω2, and (ii) determine
the values n1 and n2 that satisfy the condition. Explain.
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6.4 Linearly damped oscillator

Given: Marino – Fall 2011

Consider an underdamped 1D oscillator of mass m and spring constant k that is subjected to a damping
force of ~Fdrag = −b~̇x. You may assume that the mass is on a horizontal frictionless table so you only
need to consider the spring force and the drag force. At time t = 0 the system is released from rest at
x = A.

(a) (0.5 pts) What is the solution for x(t)? Take the derivative to find ẋ(t).

(b) (0.5 pt) Use part (a) to find and expression for E(t). (Hint: Some trig double angle identities
might help simplify the expression a bit.)

(c) (0.75 pts) Find the rate of energy loss, dE/dt, and show that it is proportional to ẋ2.

(d) (0.25 pts) Is the rate of energy loss a constant? Are the any times when the energy loss rate is 0?
Explain why this makes sense.

Back to Problem List 5
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6.5 Phase space of a critically damped oscillator

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/Phase-DHM/HWPhase-DHM.pdf

Given: Marino – Fall 2011

Shown below are phase space plots for (i) a simple harmonic oscillator (dashed) and (ii) the same
oscillator with a retarding force applied (solid). Point P represents the initial conditions of the oscillator
in both instances. In the diagram, you may assume each division along the position axis corresponds
to 0.1 m; along the velocity axis, 0.10 m/s.

(a) Explain how you can tell that the damped oscillator is not underdamped.

(b) Is the damped oscillator critically damped or overdamped? Explain how you can tell.

(c) If you said in part b that the oscillator is {critically damped, overdamped}, then draw how the
phase space plot would be different if the oscillator (starting at point P) were instead {overdamped,
critically damped}. Explain your reasoning

!

x

x.

P

Given: Pollock – Spring 2011, Spring 2012

The figure below shows the phase space plot for a simple harmonic oscillator (dashed) and the same
oscillator with a retarding force applied (solid). Point P represents the initial conditions of the oscillator
in both instances. In the diagram, you may assume each division along the position axis corresponds
to 0.1 m; along the velocity axis, 0.10 m/s.
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(a) Explain how you can tell that the damped oscillator is not underdamped.

(b) Is the damped oscillator critically damped or overdamped? Explain how you can tell.

(c) If you said in part b that the oscillator is {critically damped, overdamped}, then draw how the
phase space plot would be different if the oscillator (starting at point P) were instead {overdamped,
critically damped}. Explain your reasoning

Back to Problem List 7
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6.6 Damped oscillations, modeling real data

Given: Marino – Fall 2011, Pollock – Spring 2012

In the following pair of problems you will compare our model for a damped harmonic oscillator to
real data collected from a video of a spring-mass system immersed in viscous oil. The video from which
this position vs time data is collected is here: http://www.youtube.com/watch?v=ZYFVKZPut9w. Data
was obtained using free video tracking software (Tracker) and saved in a comma-separated variables
(CSV) file.

First, you will describe a few properties of a damped oscillator to assist you in your analysis of the
data.

(a) Write down the differential equation for a damped harmonic oscillator with undamped natural
frequency, ω0, and damping parameter, β. Write down the general solution for this differential
equation for the underdamped case (β < ω0). Then, consider the following sketch of a solution to
this differential equation for a particular choice of β and ω0 when the oscillator was displaced and
let go.

1 2 3 4 5 6
t

-50

50

100
x

You can obtain an estimate for ω1 =
√
ω2
0 − β2 using the time between successive zero crossing.

Estimate ω1 in the figure above and explain how you obtained your result.

(b) You can also obtain an estimate for β using successive maxima or minima from the plot. Estimate
β and ω0. Explain how you obtained your result.

(c) If ω0 were kept constant but β were increased (but still below ω0), sketch how the plot above
would change. What physical change to a spring-mass immersed in oil can be done to increase β?
Answer both questions for the case where ω0 is kept constant but β is decreased. What property
of the sketch does β appear to control?

(d) If β were kept constant but ω0 were decreased (but still above β), sketch how the plot above
would change. What physical change to a spring-mass immersed in oil can be done to decrease ω0?
Answer both questions for the case where β is kept constant but ω0 is increased. What property
of the sketch does ω0 appear to control?

You will now analyze a real spring-mass system immersed in viscous oil for which position versus time
data was collected for the oscillator.

(a) The position versus time data appears in a comma-separated variables (CSV) file on our course
home page and also our D2L page. Importing this data is straight-forward in Mathematica using
the Import command. You’ll need to store the data in a variable, so you can plot it.
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For example, data = Import["/file/to/datafile.csv"] will import the values in the CSV file
into the variable data. (You will use Insert → Filepath to generate the right file path on your
computer - if you need a little more help, a video describing how to import data into Mathematica
is located here: http://youtu.be/MmS3JNk7JE4 .)

Plot this data using the ListPlot command,
experiment = ListPlot[data[[All, {1, 2}]], PlotRange -> All].
You are storing this plot (as experiment) for later, so you can display the experimental data and
the results from your model on the same plot.

(b) Using the plot of the data, estimate values for ω1, β, and ω0. Determine the initial position and
initial velocity for the oscillator. This oscillator was displaced and released from rest.

(c) Plot the particular solution to damped harmonic oscillator for your model parameters (ω1, β, and
ω0) and initial conditions. You should store this plot (e.g., model = Plot[...]).

(d) Plot the result of your model and the experimental data on the same axes using the Show command.
This is why you stored the plots earlier (e.g., Show[experiment, model]). How does your model
match the experimental data? Can you tweak your model parameters to make the fit better?

(e) Why did we do this? Experimental physicists collect data and often attempt to fit a model of
that system to their data. It’s likely that you got pretty good but not great agreement with the
data that was collected. Can you identify at least 3 aspects of the physical system (spring mass
immersed in oil) that might have improved the model? Can you identify at least 2 aspects of the
data collection procedure (video tracking software) that might have helped you better estimate
your model parameters (ω1, β, and ω0)?
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6.7 Modeling the quadratically damped oscillator

Given: Pollock – Spring 2012

(a) Solve Boas Problem 8.6.12 (That’s chapter 8, section 6, problem 12, on page 423). We just want
the general solution here.

Please also tell us explicitly if the associated (complementary) homogenous problem is (choose
one) {over-damped, under-damped, undamped, critically damped} How do you tell?

(b) Now, given that the system starts with y(0) = 0, y′(0) = 0, solve that problem completely. There
should be no undetermined coefficients left!

(c) Sketch the homogeneous piece of the solution in part b) above (by itself). Also sketch the particular
solution piece (by itself). Finally add them to sketch the full solution - noting any important
aspects of the sketch. (Don’t worry about precision, this is a sketch, not a plot. We want to
know the features.) Then, use a computer to plot the actual solution. Print it out and discuss -
in particular, discuss if it did not exactly match with your sketch. (The differences may or may
not be subtle, depending on the care of your initial sketch)

(d) Let’s change the problem slightly. Suppose the middle term (the“4D” term) is quadratic rather
than linear drag. Write down the new ODE (don’t use the “D” notation, just write it out as an
ODE) This is no longer analytically solvable! But that needn’t stop us - keeping all numerical
coefficients the same as Boas had, just replacing linear with quadratic drag, use your favorite
computational environment to solve and plot the new solution (with the same initial conditions).
Did changing linear for quadratic drag change any qualitative aspects? Briefly, comment.

(e) Invent two physics problems, for which the ODEs are the ones used in parts a and d respectively.
Be explicit - what are the values of all relevant physical parameters, in SI units? What physics
would induce you to choose the ODE of part d instead of part a?

Back to Problem List 10
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6.8 Picking out the transients

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/FHM/HWFHM.doc

Given: Marino – Fall 2011, Pollock – Spring 2011, Spring 2012

A harmonic oscillator with a restoring force 25mα2x is subject to a damping force 4mαẋ and a sinu-
soidal driving force F0cos(2αt).

(a) Write down the differential equation that governs the motion of this oscillator.

(b) Show that if the driving force were removed the oscillator would become underdamped, and
express the frequency of the oscillator in terms of the given quantities. Explain your reasoning.

(c) For any damped oscillator that is driven by a sinusoidal external force, we know that the eventual
(steady-state) motion is sinusoidal in nature. However, before the oscillator reaches steady state,
its motion can be thought of as the algebraic sum of the steady-state motion plus a transient
oscillatory motion whose amplitude dies exponentially with time. The transient component of the
motion (considered by itself) could accurately describe the motion of the same oscillator with the
driving force turned off (but with the damping still present).

i. Each x vs. t graph below illustrates the actual motion (transient plus steady-state) of a
damped, driven oscillator starting at t = 0. For each case, is the frequency of the steady-
state motion greater than, less than, or equal to that of the transient motion? Explain.

ii. Identify which graph (1 or 2) would better correspond to the damped, driven oscillator de-
scribed in parts a-b of this problem. Explain your reasoning.

Back to Problem List 11

http://perlnet.umaine.edu/imt/FHM/HWFHM.doc


6 – OSCILLATIONS Last Updated: July 18, 2012

6.9 Period runaway – Modeling a pendulum at large angles

Given: Pollock – Spring 2011, Spring 2012

Consider again the simple pendulum problem. In homework 7 you showed that the pendulum’s poten-
tial energy (measured from the equilibrium level ) is U(φ) = mgL(1− cosφ) (where L is the pendulum
length) and that under the small angle assumption the motion is periodic with period τ0 = 2π

√
l/g.

In this problem we will use Mathematica to find the period for large oscillations as well:

(a) Using conservation of energy, determine φ̇ as a function of φ, given that the pendulum starts at
rest at a starting angle of Φ0. Now use this ODE to find an expression for the time the pendulum
takes to travel from φ = 0 to its maximum value Φ0. (You will have a formal integral to do that
you cannot solve analytically! That’s ok, just write down the integral, being very explicit about
the limits of integration) Because this time is a quarter of the period, write an expression for the
full period, as a multiple of τ0.

(b) Use MMA to evaluate the integral and plot τ/τ0 for 0 ≤ Φ0 ≤ 3 rad. For small Φ0, does your graph
look like that you expect? (Discuss - what value DO you expect?) What is τ/τ0 for Φ0 = π/8
rad? How about π/2 rad? What happens to τ as the amplitude of the oscillation approaches π?
Explain.

Note: The integral has some curious numerical pathologies. If your plot has little gaps in it, it’s
because MMA is generating tiny imaginary terms added to the result. You might just try plotting
the real part of the integral, using the command Re[ ]. Similarly, if it gives you symbolic results,
you might fix that by using the command N[ ], which forces MMA to evaluate the expression as
a number, if it can! By the way, this integral is called the “complete elliptic integral of the first
kind”.

(c) A real grandfather clock has a length of about half a meter, and you pull the pendulum, oh, about
10 cm to the side. When designing the clock for practical use, would the clockmaker be safe in
making the “small angle” approximation? (What we mean here is to justify your answer with a
calculation that tells you whether this clock would be annoying or useful to have in your house!
Can you be concrete about what you would consider “annoying” about a clock?)

Back to Problem List 12
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6.10 A gravitational oscillator?

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/SHM/HWSHM.pdf

Given: Pollock – Spring 2011, Spring 2012

Two large solid spheres, each with mass M, are fixed in place a distance 2l apart, as shown. A small
ball of mass m is constrained to move along the x-axis, shown as a dashed line. (Let x = 0 represent
the point on the axis directly between the spheres, with +x to the right.)

(a) Compute the net force on the ball by both
large spheres, and write down a differential
equation that governs the motion of the small
ball.

(b) Is the net force exerted on the small ball a
restoring force? Explain! Under what lim-
iting conditions for x can we say the motion
of m can be approximated as simple harmonic
motion? (For large x? For small x? Large
or small compared to what?) In this limiting
case, find the period of motion in terms of the
given parameters. Explain your reasoning.
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6.11 Parallel and series springs

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/SHM/HWSHM.pdf

Given: Pollock – Spring 2011

An ideal (massless) spring with force constant k is used to hang a crate from the ceiling, as shown (left,
below). Suppose that the spring were treated as two separate springs (1 and 2) connected end-to-end.
(See Figure) Treat each spring as having its own spring constant (k1 or k2) given by Hooke’s law,
|Fi| = kixi, where |Fi| is the magnitude of the force exerted on (or by) spring i when the length of
that spring changes by an amount xi.

(a) Relate the magnitudes of the forces F1 and F2 exerted by each spring individually, and the
magnitude of the force F exerted on the crate. Explain. (Hint: Sketch separate free body
diagrams for the springs and the crate.) Then, find the relationship between the stretches x1
and x2 of the individual springs and the stretch x of the original (single) spring. Explain your
reasoning. Based on these results, determine an expression for the spring constant of the original
spring (k) in terms of the spring constants (k1 and k2) of the two individual “ spring pieces”.
Based on this problem, if you chop an ideal spring in half, what happens to its spring constant?
Show all work.

Figure 1:

(b) Now consider the case in which you replace the original spring with two new springs (3 and 4)
that connect directly to the crate and to the ceiling. (See Figure.) Assume that the crate ends up
at the same equilibrium height in this new situation as when there was just a single spring (k).
Following the same logic as you did above, determine an expression for the spring constant k of
the original spring in terms of the spring constants k3 and k4 of the new springs. Explain your
reasoning.

Figure 2:
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6.12 Estimating damping parameters

Given: Pollock – Spring 2011

Consider a simple pendulum of length L = 10m.

(a) In an ideal world (assuming no damping, and making the small angle approximation) determine
the period of oscillation.

Now imagine we take into account air friction and determine that it causes the period to change
by 0.1%. Using Taylor’s notation introduced in Eq. 5.28, what is the damping factor β? By what
factor will the amplitude of oscillation decrease after 10 cycles?

(b) Which effect of damping would be more noticeable - the change of the period or the decrease of
the amplitude? Explain.

Back to Problem List 15
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6.13 Energy considerations in a 1D simple harmonic oscillator

Given: Pollock – Spring 2011

(a) Consider a simple harmonic oscillator with period τ . Let 〈f〉 denote the average value of a function
f(t) averaged over one complete cycle:

〈f〉 =
1

τ

∫ τ

0

f(t)dt. (1)

Prove that 〈T 〉=〈U〉 = E/2, where E is the total energy of the oscillator, T the kinetic energy
and U the potential energy.

Hint Start by proving the more general, and extremely useful, result that 〈sin2(ωt − δ)〉 =
〈cos2(ωt − δ)〉 = 1/2. Explain why these two results are almost obvious, then prove them by
using trig identities to rewrite sin2 θ and cos2 θ in terms of cos(2θ).

(b) If an additional damping force Fdamp = −bẋ is added, find the rate of change of the energy
E = 1

2mẋ
2 + 1

2kx
2 by straightforward differentiation (getting a simple result in terms of x, ẋ,

and/or ẍ) and then with the help of Taylor 5.24, show that it is exactly minus the rate at which
energy is dissipated by Fdamp.

The rest is pure extra credit.

The position of an overdamped oscillator is given by Eq. 5.40 in Taylor’s text. Find the constants C1

and C2 in terms of the initial position x0 and velocity v0. Then, sketch the behavior of x(t) for the two
separate cases x0 = 0, and v0 = 0. Finally, show that if you let β = 0, your solution for x(t) matches
the correct solution for undamped motion.

(I find this rather remarkable, since the solution you started from is for the overdamped case, it wasn’t
supposed to work for the undamped case?!) As Taylor puts it, the math is sometimes cleverer than we
are!

(a) Solve Boas Problem 8.6.12 (That’s chapter 8, section 6, problem 12, on page 423). We just want
the general solution.

Please tell us explicitly if the associated (complementary) homogenous problem is (choose one)
{over-damped, under-damped, undamped, critically damped} How do you tell?

(b) Going back to the full Boas problem - invent a physics problem for which that ODE is the solution.
Be explicit - what are the values of all relevant physical parameters, in SI units?

Now, given that the system starts with y(0) = 0, y′(0) = 0, solve that problem completely. There
should be no undetermined coefficients left!

(c) Sketch your solution in part b) above, noting any important aspects of the sketch. (Don’t worry
about precision, this is a sketch, not a plot. We want to know the features. ) Then, use MMA
to plot the actual solution. Print it out and discuss - in particular, discuss if it did not exactly
match with your sketch. (The differences may or may not be subtle, depending on the care of
your initial sketch)

Given: Pollock – Spring 2012

(a) Consider a simple harmonic oscillator with period τ . Let 〈f〉 denote the average value of a function
f(t) averaged over one complete cycle:

〈f〉 =
1

τ

∫ τ

0

f(t)dt. (2)

Prove that 〈T 〉=〈U〉 = E/2, where E is the total energy of the oscillator, T the kinetic energy
and U the potential energy.

Hint Start by proving the more general, and extremely useful, result that 〈sin2(ωt − δ)〉 =
〈cos2(ωt − δ)〉 = 1/2. Explain why these two results are almost obvious, then prove them by
using trig identities to rewrite sin2 θ and cos2 θ in terms of cos(2θ).
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(b) If we add a damping force Fdamp = −bẋ, find the rate of change of the energy E = 1
2mẋ

2 + 1
2kx

2

by straightforward differentiation (getting a simple result in terms of x, ẋ, and/or ẍ) and then
with the help of Taylor 5.24, show that it is exactly the rate at which work is done by Fdamp.

(c) The rest is pure extra credit

The position of an overdamped oscillator is given by Eq. 5.40 in Taylor’s text. Find the constants
C1 and C2 in terms of the initial position x0 and velocity v0. Then, sketch the behavior of x(t)
for the two separate cases x0 = 0, and v0 = 0. Finally, show that if you let β = 0, your solution
for x(t) matches the correct solution for undamped motion.

I find this rather remarkable, since the solution you started from is overdamped, it wasn’t supposed
to work for the undamped case?! As Taylor puts it, the math is sometimes cleverer than we are!

Back to Problem List 17
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6.14 Leading and lagging in electrical oscillations

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/FHM/HWFHM.doc

Given: Pollock – Spring 2011

A series LRC circuit (Taylor Fig 5.10) is connected across the terminals of an AC power supply that
produces a voltage V (t) = V0e

iωt. The “equation of motion” for the charge q(t) across the capacitor is
as follows:

Lq̈ +Rq̇ + q
1

C
= V0e

iωt (3)

The above differential equation will have a steady-state solution of the form:

q(t) = q0e
i(ωt−φ) [Note: The parameters q0 and φ are actually functions of ω, the frequency of the AC

power supply. However, in this problem you will not have to write out these functions in full.]

(a) In terms of q0, ω, φ and the relevant coefficients from the differential equation, write down the
following functions:

i. the potential difference ∆VC(t) across the capacitor

ii. the potential difference ∆VR(t) across the resistor

iii. the potential difference ∆VL(t) across the inductor

(b) Determine the smallest positive values of α, β, and γ (in radians) that satisfy the following Euler
relations: eiα = i, eiβ = −1, eiγ = −i

(c) Using your results from part b), rewrite the functions in part a) so that each function can be
written as a positive real number times (the same) complex exponential. Use your rewritten
functions to answer the following questions.

i. What is the phase difference between ∆VC(t) and ∆VR(t)?

Do the peaks of ∆VC(t) come just before (“leads”) or just after (“lags”) the peak of ∆VR(t)?
(Show/explain your reasoning)
ii. What is the phase difference between ∆VR(t) and ∆VL(t)?

Does ∆VL lead or lag ∆VR?

Given: Pollock – Spring 2012

A series LRC circuit (Taylor Fig 5.10) is connected across the terminals of an AC power supply that
produces a voltage V (t) = V0e

iωt. The “equation of motion” for the charge q(t) across the capacitor is
as follows:

Lq̈ +Rq̇ + q
1

C
= V0e

iωt (4)

The above differential equation has a steady-state solution which can be written as:

q(t) = q0e
i(ωt+δ) [Note: The parameters q0 and δ are actually functions of ω, the frequency of the AC

power supply. However, in this problem you will not have to solve for or write out these functions in
full!]

(a) In terms of q0, ω, δ and the relevant coefficients from the differential equation, write down the
following functions:

i. the potential difference ∆VC(t) across the capacitor

ii. the potential difference ∆VR(t) across the resistor

iii. the potential difference ∆VL(t) across the inductor
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iv. Finally, determine the smallest positive values of α, β, and γ (in radians) that satisfy the
following Euler relations: eiα = i, eiβ = −1, eiγ = −i

(b) Using your results from part iv, rewrite the functions in part i-iii so that each function can be
written as a positive real number times a complex exponential function. Use your rewritten
functions to answer the following questions.

i. What is the phase difference between ∆VC(t) and ∆VR(t)?

Do the peaks of ∆VC(t) come just before (“leads”) or just after (“lags”) the peak of ∆VR(t)?
(Show/explain your reasoning)
ii. What is the phase difference between ∆VR(t) and ∆VL(t)?

Does ∆VR(t) lead or lag ∆VL(t)?

(c) Assuming for simplicity that δ = 0, make a crude sketch on one graph of ∆VR(t), and ∆VC(t)
being very careful to identify which is which. Does your sketch agree with your claim in part b
about “leading” or “lagging”? (Briefly, comment)
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6.15 Resonant behavior

Given: Pollock – Spring 2011

In section 5.6, Taylor states that the amplitude of an oscillator subject to a sinusoidal driving force is

A2 =
f20

(ω2
0 − ω2)2 + 4β2ω2

(a) Find an expression for ω such that the amplitude A is maximized. That is, derive our text’s
Equation 5.73. (Hint: Rather than differentiate and extremize the entire expression for A(ω),
make your job easier by judiciously picking which part of that expression to differentiate and
extremize.)

Then, use your expression to find the exact maximum amplitude, Amax.

Write a second expression for the amplitude A0 which corresponds to ω = ω0.

Briefly, comment on the difference between Amax and A0.

(b) Open up the resonance PhET sim, found at

http://www.colorado.edu/physics/phet/dev/resonance/

Select the highest number version, and then click on “dev” (near the top). Play around to see
what the sim can do.

If you set the damping at a moderate value (say, 1 N m/s) and then decrease the driving frequency
of the oscillator to roughly 10% below the natural frequency, what do you predict will happen?
Focus first on simply position as a function of time, and predict, based on Taylor 5.68 and the
formula for A above what you should see (just qualitatively is fine.) Then, watch the sim carefully.
Explain how what you see is or is not consistent with what you predicted. How long does it take
for the motion to settle down? (you will only be able to crudely approximate this, but if you are
way off, chances are that something went wrong)

After waiting for any transients to die out in the system you have set up, focus on the relationship
between the phase of the driver and the mass. What does Taylor’s Fig 5.19 predict? What does
it look like on the sim? (It’s hard to tell exactly, just be approximate. Note that there is a “slo
motion” slider, you can put rulers on the screen, and you can set up multiple oscillators with
different parameters if that helps you)

(c) Now increase the frequency of the driver to about 10% higher than the resonant frequency. What
relationship between the phase of the driver and the mass do you expect? Does the PhET sim
confirm this? How does the time it takes to reach this final value compare to what it took for the
case of 10% lower driving frequency? (Briefly, comment)

(d) Check out the case of driving the mass at ω0. What is the phase difference between driver and
mass?

Building on what you have seen in the last three parts, explain Taylor Figure 5.19 in your own
words.

Extra credit. Play with the sim a little more, and write down one additional (real) question that you
have about something you notice!

Given: Pollock – Spring 2012

In section 5.6, Taylor states that the amplitude of an oscillator subject to a sinusoidal driving force is

A2 =
f20

(ω2
0 − ω2)2 + 4β2ω2

(a) Find an expression for ω such that the amplitude A is maximized. That is, derive our text’s
Equation 5.73. (Hint: Rather than differentiate and extremize the entire expression for A(ω),
make your job easier by judiciously picking which part of that expression to differentiate and
extremize.)

Then, use your expression to find the exact maximum amplitude, Amax.

Write a second expression for the amplitude A0 which corresponds to ω = ω0.

Briefly, comment on the difference between Amax and A0.
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(b) Open up the resonance PhET sim, found at

http://phet.colorado.edu/en/simulation/resonance Play around to see what the sim can
do.

By investigating the sim in a variety of ways, clearly explain Taylor’s Figure 5.19 in your own
words, referring explicitly to “experiments” or setups you made with the sim to help you connect
the figure to the behavior of the objects. (Please discuss briefly what effects ”transients” have,
and how you dealt with them in the sim)

Extra credit. Play with the sim a little more, and write down one additional (real, interesting) question
that you have about something you notice!
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6.16 Sketching phase space diagrams

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/Phase-SHM/HWPhase-SHM.pdf

Given: Pollock – Spring 2012

(a) A 4 kg mass is connected to a spring with spring constant k = 1.0 N/m. At t = 0 the mass
is set into simple harmonic motion (no damping) by releasing it from rest at a point x= -1.0 m
(i.e. a meter to the left of the origin). Sketch an accurate phase space plot for the oscillator.
Explain your reasoning and show your work. If the direction the particle follows around the plot
is ambiguous, say so, otherwise draw an arrow to show how it moves around the phase space
diagram.

(b) On the phase space trajectory you have drawn, label the point Q that represents the position and
velocity of the oscillator one-quarter period after t = 0. Explain your reasoning. Also, on the
phase space trajectory you drew, add a second trajectory (make it “dashed” so we can tell them
apart) which shows the phase space plot of a system with the same total energy but smaller mass.
Explain your reasoning briefly.

(c) Now consider an elliptical phase space trajectory for a different system, as shown in the figure
below. Assuming each unit on the horizontal axis is 10 cm, and each unit along the vertical axis is
10 cm/s, and assuming a mass m=1.0 kg, determine numerical values for the following quantities:

i) angular frequency, ii) period, iii) total energy, and iv) spring constant

x

x
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6.17 Adding linear damping to an undamped oscillator

Adapted from: Ambrose & Wittmann, Intermediate Mechanics Tutorial
Available at: http://perlnet.umaine.edu/imt/Phase-DHM/HWPhase-DHM.pdf

Given: Pollock – Spring 2012

The phase space trajectory of an undamped oscillator is shown below. In the diagram, each division
along the position axis corresponds to 0.1 m; along the velocity axis, 0.10 m/s.

	
  

 

x 

x 
. 

P 

(a) First, what is the angular frequency ω0 of the undamped oscillator? Explain how you can tell.
Next - a retarding force is now applied to the oscillator for which the damping constant (using
Taylor’s notation, introduced in Eq. 5.28) is equal to β = 0.0644ω0. By what factor does the
amplitude change after a single oscillation? After 10 cycles? Show all work.

(b) On the basis of your results above, carefully sketch the phase space plot for the first cycle of the
motion of the damped oscillator, starting at point P. There is a larger figure on the last page of
this homework set that you can print out to do your sketching.

(c) If this system corresponded to a real pendulum, which effect of damping would be more noticeable
- the change of the period or the decrease of the amplitude? Justify your opinion.
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