PHYS 2210 Fall 2010 Homework Set 2

Due in class on Sept 2, 2010
Show your work!

1. Taylor, Problem 1.10 A particle moves in a circle (center O and radius R) with constant angular velocity ω counter-clockwise. The circle lies in the xy plane and the particle is on the x axis at time $\mathrm{t}=0$. Show that the particle's position is given by

$$
\begin{equation*}
\vec{r}(t)=\hat{x} R \cos (\omega t)+\hat{y} R \sin (\omega t) \tag{1}
\end{equation*}
$$

Find the particle's velocity and acceleration. What are the magnitude and direction of the acceleration? Relate your results to well-known properties of uniform circular motion.
2. Taylor, Problem 1.39 A ball is thrown with initial speed v_{0} up an inclined plane. The plane is inclined at and angle ϕ above the horizontal, and the ball's initial velocity is at an angle θ above the plane. Choose the axes with x measured up the slope, y normal to the slope, and z across it. Write down Newton's second law using these axes and find the ball's position a function of time. Show that the ball lands a distance $R=2 v_{0}^{2} \sin (\theta) \cos (\theta+\phi) /\left(g \cos ^{2} \phi\right)$ from its launch point. Show that for given v_{0} and ϕ, the maximum possible range up the inclined plane is $R_{\max }=v_{0}^{2} /[g(1+\sin (\phi)]$.
3. Taylor, Problem 1.41 An astronaut in gravity-free space is twirling a mass m on the end of a string of length R in a circle with constant angular velocity ω. Write down Newton's second law in polar coordinates and find the tension in the string.
4. Boas, Chapter 8, Section 2, Problem 8 Separate the variables and find a solution containing one arbitrary constant. Then find the value of the constant to give a particular solution satisfying the given boundary condition.

$$
\begin{equation*}
y^{\prime}+2 x y^{2}=0 \tag{2}
\end{equation*}
$$

5. Boas, Chapter 8, Section 3, Problem 2 Find a general solution of the following differential equation.

$$
\begin{equation*}
x^{2} y^{\prime}+3 x y=1 \tag{3}
\end{equation*}
$$

6. Boas, Chapter 8, Section 3, Problem 7 Find a general solution of the following differential equation.

$$
\begin{equation*}
\left(1+e^{x}\right) y^{\prime}+2 e^{x} y=\left(1+e^{x}\right) e^{x} \tag{4}
\end{equation*}
$$

