Show and explain all of your work! Correct answers for which we cannot follow your work are worth no credit.

1. For this problem, consider the periodic function $f(x)$: (one period of the function is specified here)

$$
\begin{aligned}
f(x) & =-x, \text { for }-\frac{\pi}{2}<x<0 \\
& =x, \text { for } 0<x<\frac{\pi}{2}
\end{aligned}
$$

(a) (2 pt) Find the Fourier Series expansion for $f(x)$. Be sure to include a sketch of the function.
(b) (1 pt) To check that your solution is correct, use a computer, plot the sum of the first 3 non-zero terms in this series from $-\pi$ to π. It should resemble the sketch that you drew in part a.
2. For this problem, consider the periodic function $g(x)$: (one period of the function is specified here)

$$
\begin{aligned}
g(x) & =1, \text { for }-1<x<1 \\
& =0, \text { for } 1<x<5
\end{aligned}
$$

(a) (2 pt) Find the Fourier Series expansion for $g(x)$. Be sure to include a sketch of the function.
(b) (1 pt) To check that your solution is correct, use a computer, plot the sum of the first first 4 non-zero terms in this series from -10 to 10 . It should resemble the sketch that you drew in part a.
3. $(0.5 \mathrm{pt})$ Show that the functions x^{2} and $\sin x$ are orthogonal on the interval $(-1,1)$. (Hint: You should not need to work out the integral. What do you know about even and odd functions?)
4. Consider the following function:

$$
\begin{aligned}
f(x) & =\sin x, \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
& =0, \text { for }|x|>\frac{\pi}{2}
\end{aligned}
$$

(a) (1 pt) Demonstrate that the Fourier transform of $f(x)$ is $g(\alpha)=\frac{-i \alpha \cos \left(\frac{\alpha \pi}{2}\right)}{\pi\left(1-\alpha^{2}\right)}$. Hint: It might help to express $e^{-i \alpha x}$ in terms of sines and cosines. Recalling the properties of integrals of odd and even functions can also save you some work.
(b) (0.5 pt) Using your answer for $g(\alpha)$, express $f(x)$ as a Fourier integral (i.e. substitute your result for $g(\alpha)$ into the Fourier integral for $f(x))$. Leave the answer as an integral. Do not evaluate the integral.
5. (2 pt) Evaluate the following integrals:
(a) $\int_{0}^{\pi} \sin (x) \delta\left(x-\frac{\pi}{2}\right) d x$
(b) $\int_{-\infty}^{\infty} e^{x} \delta(3 x) d x$
(c) $\int_{0}^{2 \pi} \cos (x) \delta(x+\pi) d x$
(d) $\int_{-10}^{10} x^{2} \delta(1-x) d x$

