
PHYS 2210UNIVERSITY OF COLORADO AT BOULDER

CLASSICAL MECHANICS AND MATH METHODS, SPRING, 2011

Homework 6

(Due Date: Start of class on Thurs. Feb 17 )

NOTE: In general, lettered parts are worth 4 pts each, unless we state otherwise.

1. A collision between two bodies is defined to be elastic if the total kinetic energy before and after the collision
is the same. Consider an elastic collision between two identical atoms one which is initially at rest ~v2 = 0
and the other is moving with velocity ~v1 6= 0. Denoting ~v′1,2 the corresponding velocities after the collision

(a) Write down the vector equations representing the conservation of momentum and the scalar equation
representing the conservation of kinetic energy in an elastic collision.

(b) Use this to prove that the angle between ~v′1 and ~v′2 is π/2. Think of a situation where this fact might
prove to be useful or relevant.

2. A rocket having two or more engines, stacked one on top of another and firing in succession is called a
multi-stage rocket. Normally each stage is jettisoned after completing its firing. The reason rocketeers stage
models is to increase the final sped (and thus, altitude) of the uppermost stage. This is accomplished by
dropping unneeded mass throughout the burn so the top stage can be very light and coast a long way upward.
Let us understand better the advantages of a multi-stage rocket. Imagine that the rocket carries 70% of its
initial mass as fuel (i.e. the mass of all the fuel is 0.7m0)

(a) What is the rocket final speed accelerating from rest in free space, if it burns its fuel in a single stage?
Express your answer in terms of vex

(b) Now suppose instead that it burns the fuel in two stages like this: In the first stage it burns a mass
0.35m0 of fuel. It then jettisons the (empty) first stage fuel tank. Let’s assume this empty tank has a
mass of 0.1m0. It then burns the remaining 0.35m0 of fuel. (So, we’ve burned the same total amount
of fuel as part a, right? We simply jettisoned an empty fuel-stage in the middle) Find the final speed
in this case, assuming the same value of vex as in part a. Compare and discuss briefly.

3. Taylor works out the rocket equation in deep space. But at launch, obviously you cannot neglect gravity -
the net external force, dP/dt, is no longer zero.

(a) Follow Taylor’s derivation on page 86, and fix it up, getting to Eq 3.6 and find the “correction” term
you need to add to include gravity. Assuming that vexh is a fixed (constant) number, and assuming
that you want the rocket to simply “hover” above the ground (rather than really launching), solve the
ODE you get to find rocket mass as a function of time. (Does dm/dt turn out to be a constant? Explain
physically why your answer to that question makes sense)

(b) If your payload (the mass that is left over after all the fuel is gone) is roughly e−2 = .135 of the initial
mass, how long can you hover? Given the (very optimistic!) value of vexh = 2000m/s, comment on
why we don’t all commute around with jetpacks.
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4. So far we have considered the ideal case of a rocket without drag. In real life, however, drag can be an
important limitation and must be considered. Imagine the situation of a linear drag ~f = −b~v acting on the
rocket body only (with no other external forces, so we’re back to the “gravity free” case of deep space)

(a) Once again, the net external force, dP/dt, is not zero. Follow Taylor’s derivation on page 86, and fix
it up, getting to Eq 3.6 and find the “correction” term you need to add, caused by drag.

(b) Now solve your ODE, to show that if the rocket starts from rest and ejects a mass at constant rate

ṁ = −k (with k a given constant), the its speed is given by v = k
b
vex

[

1 −
(

m
m0

)A
]

What is A in terms of k, b, vex and m0.

HINT: since dm/dt=-k, you can eliminate any stray “dt” terms that appear in your ODE.

(c) What is the corresponding speed if we ignore drag? Show that the eq’n above reproduces the speed for
the drag free case if b → 0 (see hint below). Calculate the first non-vanishing correction introduced by
a finite drag to the speed. Does the sign of your correction make physical sense? Briefly, discuss.

HINT: A trick that may be helpful here: you can always rewrite the function f(x) = cx as f(x) =
eln(cx) = ex ln(c).

5. The magnetic field inside a particular very long current carrying wire is given by ~B = −(B0

R
)rφ̂, where R

is the radius of the wire, and r is the distance from the center of the wire. Ampere’s law, discovered by
Ampere in 1826, relates the integrated magnetic field around any closed loop to the total electric current
passing through the loop,

∮

~B · d~r = µ0Ithrough. If we want to determine the current passing through the

loops shown in Fig.1, we need to evaluate the line integral of ~B · d~r.

Figure 1:

(a) Explicitly compute
∮

~B · d~r along the full circle path of radius R, shown in Fig.1a. Use this to find
Ithrough. (Briefly, discuss the physical meaning of the sign of your answer). (2 pts)

(b) Then, compute
∮

~B · d~r along the path of radius r0 in Fig 1b. How does Ithru compare with part a? (2
pts)

(c) Compute
∮

~B · d~r along the quarter circle path in Fig 1c. Compare your answers to the above three
parts, and discuss. (What do you conclude about how the current is distributed through the wire?) (2
pts)

(d) Sketch a vector plot of ~B = −(B0

R
)rφ̂. Rewrite ~B entirely in Cartesian coordinates, and then, use the

command VectorPlot in Mathematica to generate a plot of ~B to check your hand-drawn sketch. (4 pts)

CONTINUED



– 3 – PHYS 2210

6. This one is pure extra credit! A puck (mass m) on a frictionless air hockey table is attached to a cord
passing through a hole in the surface as in the figure. The puck is moving in a circle of radius ri with angular
velocity ωi. The cord is then slowly pulled from below, shortening the radius to rf (r-final)

(a) What is angular velocity of the puck when the radius is rf? (2 pts)

(b) Assuming that the string is pulled so slowly that we can approximate the puck’s path by a circle of
slowly shrinking radius, calculate the work done in moving the puck from r0 to r. (Look back at Taylor
Eq 1.48. “Slowly” means that ṙ is tiny, as is the angular acceleration, so only the centripetal force will
be important). Compare your answer with the puck’s gain in kinetic energy, and comment briefly.


