UNIVERSITY OF COLORADO AT BOULDER PHYS 2210

CLASSICAL MECHANICS AND MATH METHODS, SPRING, 2011

Homework 9

(Due Date: Start of class on Thurs. March 10 )

1. You are stranded on the surface of the asteroid Vesta. If the mass of the asteroid is M and its radius is
R, how fast would you have to jump off its surface to be able to escape from its gravitational field? (Your
estimate should be based on parameters that characterize the asteroid, not parameters that describe your
jumping ability.) Given your formula, look up the approximate mass and radius of the asteroid Vesta 3 and
determine a numerical value of the escape velocity. Could you escape in this way? (Briefly, explain) If so,
roughly how big in radius is the maximum the asteroid could be, for you to still escape this way? If not,
estimate how much smaller an asteroid you would need, to escape from it in this way?

Figure 1:

2. Consider two identical uniform rods of length L and mass m lying along the same line and having their
closest points separated by a distance d as shown in the figure
(a) Calculate the mutual force between these rods, both its direction and magnitude.

(b) Now do several checks. First, make sure the units worked out (!) The, find the magnitude of the force
in the limit L — 0. What do you expect? Briefly, discuss. Lastly, find the magnitude of the force in
the limit d — oo 7 Again, is it what you expect? Briefly, discuss.
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Figure 2:

3. Practicing with complex numbers. (1 pt each)

(a) If 21 = —/3 + 1, draw z; in the complex plane. Compute its real and imaginary parts and magnitude.
Write z; as Ae* and determine A and 6.

(b) If 22 =1/(1 + i), draw z in the complex plane. Compute its real and imaginary parts and magnitude.
Write z as Ae®” and determine A and 6.

(c) What are the real and imaginary parts of 1/22 with z3 = 0.5¢="7/3,

(d) Compute Z = z; * 23 with z; and z3 given in parts (a) and (¢). Draw Z in the complex plane. Compute
its real and imaginary parts and magnitude. Write Z as Ae?’ and determine A and 6.

CONTINUED
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4. Consider again the simple pendulum problem. In homework 7 you showed that the pendulum’s potential
energy (measured from the equilibrium level ) is U(¢) = mgL(1 — cos ¢) (where L is the pendulum length)
and that under the small angle assumption the motion is periodic with period 79 = 27 \/% In this problem
we will use Mathematica to find the period for large oscillations as well:

(a)

Using conservation of energy, determine c;b as a function of ¢, given that the pendulum starts at rest at a
starting angle of ®,. Now use this ODE to find an expression for the time the pendulum takes to travel
from ¢ = 0 to its maximum value ®y. (You will have a formal integral to do that you cannot solve
analytically! That’s ok, just write down the integral, being very explicit about the limits of integration)
Because this time is a quarter of the period, write an expression for the full period, as a multiple of 7.

Use MMA to evaluate the integral and plot 7/79 for 0 < &3 < 3 rad. For small @, does your graph
look like that you expect? (Discuss - what value DO you expect?) What is 7/7y for &g = /8 rad?
How about /2 rad? What happens to 7 as the amplitude of the oscillation approaches 7?7 Explain.

Note: The integral has some curious numerical pathologies. If your plot has little gaps in it, it’s because
MMA is generating tiny imaginary terms added to the result. You might just try plotting the real part
of the integral, using the command Re[ . Similarly, if it gives you symbolic results, you might fix that
by using the command NJ |, which forces MMA to evaluate the expression as a number, if it can! By
the way, this integral is called the “complete elliptic integral of the first kind”.

A real grandfather clock has a length of about half a meter, and you pull the pendulum, oh, about 10
cm to the side. When designing the clock for practical use, would the clockmaker be safe in making the
“small angle” approximation? (What we mean here is to justify your answer with a calculation that
tells you whether this clock would be annoying or useful to have in your house! Can you be concrete
about what you would consider “annoying” about a clock?)

5. Two large solid spheres, each with mass M, are fixed in place a distance 21 apart, as shown. A small ball of
mass m is constrained to move along the x-axis, shown as a dashed line. (Let x = 0 represent the point on
the axis directly between the spheres, with +x to the right.)

(a)
(b)
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Figure 3:

Compute the net force on the ball by both large spheres, and write down a differential equation that
governs the motion of the small ball.

Is the net force exerted on the small ball a restoring force? Explain how you can tell from your
differential equation above? Under what limiting conditions for x is it possible to say that the motion
of the mass m can be approximated as simple harmonic motion? (For large x? For small x? Large or
small compared to what?) In this limiting case, determine an expression for the period of motion in
terms of the given parameters. Explain your reasoning.

CONTINUED
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6. An ideal (massless) spring with force constant k is used to hang a crate from the ceiling, as shown (left,
below). Suppose that the spring were treated as two separate springs (1 and 2) connected end-to-end. (See
Figure) Treat each spring as having its own spring constant (k; or k3) given by Hooke’s law, |F;| = k;z;,
where |F;| is the magnitude of the force exerted on (or by) spring ¢ when the length of that spring changes
by an amount x;.

(a)

Relate the magnitudes of the forces F; and F; exerted by each spring individually, and the magnitude
of the force F exerted on the crate. Explain. (Hint: Sketch separate free body diagrams for the springs
and the crate.) Then, find the relationship between the stretches x; and x5 of the individual springs and
the stretch x of the original (single) spring. Explain your reasoning. Based on these results, determine
an expression for the spring constant of the original spring (k) in terms of the spring constants (k; and
k2) of the two individual “ spring pieces”. Based on this problem, if you chop an ideal spring in half,
what happens to its spring constant? Show all work.

Figure 4:

Now consider the case in which you replace the original spring with two new springs (3 and 4) that
connect directly to the crate and to the ceiling. (See Figure.) Assume that the crate ends up at the
same equilibrium height in this new situation as when there was just a single spring (k). Following the
same logic as you did above, determine an expression for the spring constant k of the original spring in
terms of the spring constants k3 and k4 of the new springs. Explain your reasoning.

Figure 5:

NOTE: There is an extra-credit survey online - just go to our course main page, you’ll see it linked
prominently on our “Special notes” section, under the current fun picture. Or go directly to

http:/ /www. colorado.edu/physics/phys2210/phys2210_sp11 /preflights/survey_midterm_2210.html

We really appreciate your feedback, it helps us make this a better course!




