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Our sample report
appears long, but it
really is not. There
are three reasons for
its apparent length:
(1) The margins have
been increased to ac-
commodate annota-
tions like these, (2)
we worked out a lot
of algebra inline (⇠3
pages), and (3) figures
take up a lot of space
(⇠4 pages). These
annotation boxes are
meant to help you de-
cide what goes into
your final report.

Abstract

We modeled a pair of coupled di↵erential equations that represent a simple
mathematical model for a laser. The model is nonlinear, but can be investigated
both using analytic and numerical methods. We describe this model in detail
connecting each variable in the model to the physics it controls/describes. We
found fixed points (i.e., critical points) for this system and have determined
their stability. This system appears to have a number of variables that control
the stability, but by non-dimensionalizing the model, we have found that a
certain ratio of these parameters control lasing of the system. We have plotted
interesting results from the analytics and modeled particular trajectories of the
system.

An abstract or sum-
mary is nice, but not
necessary. It helps the
reader figure out the
point of your project.
It also provides you
with a nice summary
of what you did.

1 Introduction

1.1 How do lasers work?

Most lasers work on the principle of an “inverted population”. That is, atoms in
In this section, we
have tried to ex-
plain/motivate the
model that we are go-
ing to work with. You
might notice this is
the exact text from
our progress report.
That’s OK!

the laser system a “pumped” into an excited state. The resulting decay of those
atoms to a lower state produces photons at a particular wavelength. The atoms
in a laser system are typically immersed in a “gain medium”. The photons that
are emitted bounce between two mirrors on either end of the gain medium, causing
further stimulated emission which amplifies (increases power) the output. One of
the mirrors is partially transparent so that some photons escape. These photons are
of a single wavelength and coherent (roughly, the same phase).

1.2 The laser model

Milonni and Eberly [1] proposed a mathematical model for laser dynamics that takes We are simply pre-
senting the model
that we are going to
work with. Notice, we
have cited where it
came from.

into account both the number of laser photons (n) and excited atoms (N):
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dn

dt

= GnN � kn, (1a)

dN

dt

= �GnN � fN + p. (1b)

In this model, there are N excited atoms in the system which can produce the
n laser photons. The number of laser photons (n) increases when there are more This section of text

is very important. It
provides the expla-
nation of the model.
We are attempting
to make sense of the
model and connect it
back to the physics.
Notice, we haven’t
performed any calcu-
lations yet. We are
simply illustrating
that we understand
some of the details
of the model that we
have chosen to work
with.

excited atoms (N) and more laser photons (n) available to excite those atoms. More-
over, the gain coe�cient, G, for the medium controls how e↵ective these photons
are in exciting more atoms and thus creating more photons. This is the first term in
Eq. 1, GnN . The number of photons (n) decreases as photons leave the system at
a rate k; this is proportional to the number of laser photons in the system (n). This
is the second term in Eq. 1, �kn. As more photons are emitted by atoms, fewer
atoms are excited; the rate at which this happens is proportional to the number of
excited atoms (N) and the e�ciency of the medium (G). This is the first term in
Eq. 2, �GnN . The number of excited atoms (N) also drops as atoms emit photons
at a rate f ; again, this is also proportional to the number of excited atoms (N).
This is the second term in Eq. 2, �fN . Finally, the number of excited atoms (N)
increases as the pumping of energy into the system increases, p. This is the final
term in Eq. 2, p.

We can consider the limit when the rate of excited atom production is much
“slower” than the production of laser photons. This might seem like a counter This section still con-

tains more sense-
making. We are at-
tempting to motivate
a simpler model, by
consider a particular
limit. Notice, that we
don’t actually take
the limit and perform
the mathematics until
we have explained the
physics behind taking
this limit.

intuitive limit, how can excited atom production be slower than the the production
of laser photons. In fact, what we are saying is that laser photons stay in the system
for a much longer time than atoms are excited. That is, atoms quickly drop down
and release a photon which stays in the cavity of a long time. This limit is k

f ⌧ 1,
that its the decay rate of photons due to scattering and mirror transmission is
much smaller than the rate of spontaneous emission. This limit is e↵ectively taking
Ṅ ⇡ 0 because atoms are not excited “long enough” to be counted compared to the
photons they produce [2]. In the quasi-static limit, when Ṅ is small compared to ṅ,
the model reduces to a single non-linear di↵erential equation,

We chose to enumer-
ate only final equa-
tions. Later, you will
see that we have per-
formed some algebra
inline. You can do
this, or turn in sepa-
rate calculations.

dN

dt

= 0 = �GnN � fN + p �! N =
p

Gn+ f

dn

dt

= Gn

✓
p

Gn+ f

◆
� kn (2)

1.3 Non-dimensionalizing the laser model

Equations 1 and 2 are mathematical models of a laser that have explicit units (e.g.,
f has units of atoms/second). Often, it makes sense to remove the units from these We chose to non-

dimensionalize our
model and this sec-
tion provides the mo-
tivation for that work.
You are certainly free
to maintain dimen-
sions in your model.
In that case, you
might discuss typi-
cal parameter values
for the model your are
working with.

models in a process called, “non-dimenionalization”. This produces a mathematical
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model which has fundamentally the same dynamics as the model with dimensions.
However, a non-dimensional model is often easier to work with because the number of
parameters is typically reduced (i.e., parameters tend to form dimensionless ratios)
[2].

1.3.1 The one-dimensional model

We begin by non-dimensionalizing equation 2 because it is a single di↵erential equa-
tion. Equation 2 has a single independent variable t and a single dependent variable This is how you non-

dimensionalize most
equations, in general.
As you might notice,
we have worked out
the algebra in detail.
This is for your ben-
efit; should you chose
to non-dimensionalize
your own model.

n. We propose two critical numbers (tc and nc) which will yield dimensionless vari-
ables (⌧ = t/tc and x = n/nc). We plug these definitions into equation 2 and
obtain

nc

tc

dx

d⌧

= Gxnc

✓
p

Gxnc + f

◆
� kxnc.

If we divide this equation by nc and multiply by tc the resulting equation is
dimensionless,

dx

d⌧

= Gxtc

✓
p

Gxnc + f

◆
� kxtc.

We choose tc = 1/k to simplify the second term to a single non-dimensional
variable,

dx

d⌧

=
Gx

k

✓
p

Gxnc + f

◆
� x.

We also divide out an f from the denominator to ensure it is dimensionless and
swap x for p in the parentheses,

dx

d⌧

=
Gp

fk

✓
x

Gxnc/f + 1

◆
� x.

We choose nc = f/G to simplify the first term in the denominator to a single
non-dimensional variable,

dx

d⌧

=
Gp

fk

✓
x

x+ 1

◆
� x.

Finally, we rewrite the ratio Gp/fk as c, the single parameter which characterizes
the system.

dx

d⌧

=
cx

x+ 1
� x. (3)

We can interpret c as the ratio of parameters that contribute to lasing (high We have performed
some algebra to ob-
tain our dimensionless
model; but, more im-
portantly, we have
tried to make sense of
the resulting dimen-
sionless ratio. We are
trying to make sense
of the physics every
step of the way.

gain, G; and high pumping, p) to parameters that can detract from it (high decay
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rates, f and k). Indeed, f is a funny parameter because it is possible for it to
both contribute to lasing and detract from it. In this case, we interpret is as being
unproductive for lasing because higher f with fixed G and p will not lead to lasing.
So we expect that the laser should operate (i.e., lase) when c > 1. We shall see this
is the case in the next full section.

1.3.2 The two-dimensional model

Non-dimensionalizing the two-dimensional model, given by equation 1, proceeds the
same way as before. However, in this model, they are now two dependent variables Here’s another

example of non-
dimensionalizing a
model. There’s a bit
more algebra in this
section, but we have
attempted to explain
each step for your
benefit.

(n and N), hence we propose a third critical number (Ñc) that will remove the
dimensions of the second dependent variable (i.e., y = N/Nc). We plug the two
previous definitions into equation 1 to obtain:

ñc

t̃c

dx

d⌧

= GñcÑcxy � kñcx,

Ñc

t̃c

dy

d⌧

= �GñcÑcxy � fÑcy + p.

Isolating ẋ and ẏ, we obtain,

dx

d⌧

= GÑct̃cxy � kt̃cx,

dy

d⌧

= �Gñct̃cxy � f t̃cy +
pt̃c

Ñc
.

Again, the simplest isolation of a variable comes from setting t̃c = 1/k. This
isolates x in the first equation,

dx

d⌧

=
GÑc

k

xy � x,

dy

d⌧

= �Gñc

k

xy � f

k

y +
p

kÑc
.

The next simplest isolation is a the product (xy) in the first equation. By setting
Ñc = k/G, we obtain,

dx

d⌧

= xy � x,

dy

d⌧

= �Gñc

k

xy � f

k

y +
pG

k

2
.

The final characteristic number can be set to isolate the first term in the second
equation. In fact, setting it equal to Ñc makes the most sense (i.e., ñc = k/G),
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dx

d⌧

= xy � x,

dy

d⌧

= �xy � f

k

y +
pG

k

2
.

We have reduced two non-linear di↵erential equations with four free parameters
to two non-linear di↵erential equations with two free dimensionless ratios. We set
a = f/k and b = pG/k

2 to finally obtain,

dx

d⌧

= x(y � 1), (4a)

dy

d⌧

= �y(x+ a) + b. (4b)

We can understand the dimensionless ratios as a measure of losses (if a is large In this case, we
have a slightly more
complicated non-
dimensional model,
but we tried to make
sense of the new di-
mensionless ratios and
how they might influ-
ence the physics.

and b is small) or gains (if a is small and b is large). Therefore, we expect the laser
to operate (i.e., lase) if b > a. This is the same condition as before because c = b/a.
We shall this is the case in the next full section.

2 Analytical analysis of the laser model

Analytical analysis of equations 3 and 4 can help us make sense of how lasing is
possible in each of these models. First, we can look for steady solutions (i.e., fixed Each project must

contain some analyt-
ical work. For a non-
linear model, finding
steady solutions is an
appropriate analyt-
ical exercise. Your
project might lend
itself to analytics in
some limit or you
might compare it to
a simpler analytical
model.

or “critical” points). Steady solutions do not change with time and it is possible
for such solutions to be stable (attractor) or unstable (repeller). That is, it is
possible that given a particular set of parameter values all solutions either approach
or run away from a particular steady solution. To determine which is the case, we
must evaluate the stability of our obtained steady solutions. For one-dimensional
systems, this is quite simple [3]. For multidimensional systems, we can evaluate
linear stability using the Jacboian [2].

2.1 Steady solutions of the one-dimensional systems

To find steady solutions for the one-dimensional system, we set equation 3 to zero
and solve for x.

ẋ = 0 =
cx

x+ 1
� x
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cx

x+ 1
= x

cx = x

2 + x

0 = x

2 + (1� c)x

0 = x (x+ (1� c))

Hence, there are two possible steady solutions x0 = 0 or x0 = c� 1. Recall that Again, we worked out
the algebra inline.
This is not necessary,
but please attach that
work to your final
write-up.

the dimensionless ratio c is a free parameter. The stability of these solutions might
depend on our choice of this parameter. We postulated that c > 1 should produce
lasing. To evaluate the stability of these solutions we take evaluate the sign of the
derivative of right-hand side of equation 3 with respect to x at the fixed points. This
is identical to checking the sign of ẍ, that is, concavity near the fixed point.

ẋ = F (x) =
cx

x+ 1
� x

F

0(x) =
c

x+ 1
� cx

(x+ 1)2
� 1

F

0(0) =
c

0 + 1
� 0

(0 + 1)2
� 1 = c� 1

F

0(c� 1) =
c

(c� 1) + 1
� c(c� 1)

((c� 1) + 1)2
� 1 =

1

c

� 1

If F 0(x0) > 0, the solution is unstable (repeller), and if F 0(x0) < 0, the solution
is stable (attractor). If c < 1, the first steady solution is stable (i.e., x0 = 0 means The mathematics we

performed had a pur-
pose. We connected
our earlier prediction
(i.e., lasing occurs
when c > 1) to the
mathematics neces-
sary to prove this.
Notice that we have
also made sense of the
other limit (i.e., that
the unstable solution
is unphysical).

no lasing) and the second steady solution is unstable (x0 = c�1). For this situation
(c < 1), the second solution is unphysical (x0 = c � 1 < 0); this corresponds
to negative photon numbers. If c > 1, the first steady solution is unstable and the
second steady solution is stable. In this situation (c > 1), the second steady solution
is the lasing solution (x0 = c � 1 > 0) that we predicted earlier. In particular, the
laser photon number is some finite positive value.

2.2 Steady solutions of the two-dimensional systems

To find steady solutions for the two-dimensional system, we set both di↵erential
equations in equation 4 to zero and solve for x and y simultaneously.,

ẋ = 0 = x(y � 1),

ẏ = 0 = �y(x+ a) + b.
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The first equation above is satisfied if x = 0 or y = 1. First, we choose x = 0
and plug this into the second equation to find what y must be,

0 = �y(0 + a) + b

0 = �ay + b

y = b/a

Hence, the first steady solution is hx0, y0i = h0, b/ai. Notice that this corre-
sponds to having no laser photons in the cavity (x0 = 0). To find the second Here, we have made

sense of the first
steady solution.solution, we allow set y = 1 in the second equation and solve for x,

0 = �1(x+ a) + b

0 = �x+ b� a

x = b� a

Hence, the second steady solution is hx0, y0i = hb� a, 1i. This solution can have
laser photons in the cavity if b > a as that corresponds to positive x0. This is the Here, we have made

sense of the second
steady solution.lasing solution that we predicted earlier.

We can determine the linear stability of these steady solutions by evaluating the
Jacobian (matrix of partial derivatives) of this system at these fixed points. This This section de-

scribes how we probed
stability for multi-
dimensional systems.
This work is definitely
beyond the scope of
our course, but the
description of the
method is included
for completeness. You
may contact us if you
are interested in per-
forming this type of
investigation.

methodology is somewhat beyond the scope of the current project (and course!), so
we do not detail the method here. Interested readers are directed to Strogatz [2].
But, we sketch out the idea.

A particular solution that converges (or runs away from) to a fixed point (steady
solution) does so along a particular trajectory or path. This path can be simple (such
as a straight-line along the x or y-axis) or complex (a curved path that eventually
is tangent to some direction). The latter is an approach (or run away) along an
eigenvector of the Jacobian evaluated at the fixed point. The rate of approach (or run
away) can be determined by that eigenvector’s eigenvalue. Hence, the eigenvalues
of the Jacobian are very important in talking about the long time dynamics of the
system. Do solutions converge to the fixed point or run way from it?

The sign of the eigenvalues determine determine whether the fixed point is a
stable fixed point (both eigenvalues negative and real), unstable fixed point (both
eigenvalues positive and real), or a saddle point – stable in one direction but unstable
in another (both real, but one positive and one negative). More interesting behaviors
is possible (i.e., if the eigenvalues are complex).

For the current system, the fixed point h0, b/ai is linearly stable if b/a < 1 and
a saddle point when b/a > 1. That is, lasing appears impossible unless the gains We make sense of

the stability of both
steady solutions and
have connected it
back to the physics.

(b) are stronger than the losses (a). The fixed point hb � a, 1i is linearly stable if
b/a > 1 and a saddle (but irrelevant) if b/a < 1. This saddle point is irrelevant
because b� a < 0 is not a physical solution (i.e., negative photon number!).
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3 Computational analysis of the laser model

We have built some intuition about the laser model. In particular, when losses
outweigh gains (regardless of model), lasing is not possible. We present numerical
computations to further illustrate these claims.

3.1 Numerical analysis of the one-dimensional system

In our analytical analysis of the one-dimensional laser model, we have found one
physical solution that occurs at low gains and high losses (c < 1). This solution
corresponds to no lasing; laser photons in the cavity tend to zero. Below, we plotted This section starts

with the numerics.
To perform the work
in this section, we
used NDSolve as well
as various plotting
tools. We have, in
each figure caption,
attempted to make
sense of our numer-
ical results and con-
nect the plots to the
physics.

the phase space trajectory for this one-dimensional system and observed that all
solutions converge to the no lasing solution in this parameter limit (Figure 1). All
solutions in a one-dimensional system follow the same phase space trajectory [2].

0.5 1x

-0.8

-0.4

0
x†

(a) Low gains (c < 1) produce no lasing.

0.5 1x

-0.8

-0.4

0
x†

(b) Two trajectories (they overlap)
started with x = 1 and x = 0.5.

Figure 1: Phase space plots of the one-dimensional laser model (c = 0.9). (a) In
a one-dimensional system, all solutions (blue line) converge to zero photon number
(red dot). (b) A series of particular solutions (orange line) follows the same phase
space trajectory (blue line).

We obtained numerical solutions for the model for two choices of initial condi-
tions. After roughly 20⌧ , both tend to zero photon number (Figure 2). If c < 1,
then the system has more losses, through mirror transmission and photon scattering,
than gains, through pumping. Hence, the system is unable to sustain laser photons Here, we have con-

nected the predictions
from the model back
to the physical sys-
tem.

in the cavity for any appreciable amount of time.
The system bifurcates and two solutions appear as c is increased above 1. One of

the solutions previously existed and is unstable (no lasing), but the new solution (las-
ing) is stable. Below, we plotted the phase space trajectory for this one-dimensional
system and observed that all solutions converge to the lasing solution for c > 1
(Figure 3).

We obtained numerical solutions for the model for two choices of initial condi-
tions. After roughly, 20⌧ , both tend toward (c � 1) photon number (Figure 4). If Notice that, again, we

emphasized the con-
nection between the
models predictions
and the physics.

c > 1, the system has more gains, through pumping or choice of medium, than losses,
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0 10 20t0

0.5

1
x

(a) Trajectory started with x = 0.1.

0 10 20t0

0.5

1
x

(b) Trajectory started with x = 1.

Figure 2: Plots of dimensionless photon number versus time for the one-dimensional
laser model. Regardless of initial conditions, all solutions coverage to zero photon
number.

0 0.5 1x0

0.1

0.2
x†

(a) High gains (c > 1) produce lasing.

0 0.5 1x0

0.1

0.2
x†

(b) Two trajectories (they overlap)
started with x = 0.1 and x = 0.5.

Figure 3: Phase space plots of the one-dimensional laser model (c = 2). (a) In a one-
dimensional system, all solutions (blue line) converge to (c�1) photon number (green
dot) and run away from zero photon number (red dot). (b) A series of particular
solutions (orange line) follows the same phase space trajectory (blue line).

through mirror transmission and scattering. Hence, the system is self-sustaining.

3.2 Numerical analysis of the two-dimensional system

In our analytical analysis of the two-dimensional laser model, we found only one
physical solution that occurs at high losses and low gains (b/a < 1). This solution This section is quite

similar to the pre-
vious section. Note
the sense-making and
connections to previ-
ous predictions in this
section.

corresponds to no lasing; there tend to be no laser photons even though some fixed
fraction of atoms remain excited. Below, we plotted the phase space for this two-
dimensional system. The vertical axis in these plots correspond to the number
excited atoms and the horizontal axis correspond to number of laser photons. All
physical solutions converge to the steady solution (Figure 5).

We obtained numerical solutions for the model for two choices of initial condi-
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0 10 20t0

0.5

1
x

(a) Trajectory started with x = 0.1.

0 10 20t0

0.5

1
x

(b) Trajectory started with x = 0.5.

Figure 4: Plots of dimensionless photon number versus time for the one-dimensional
laser model. Regardless of initial conditions, all solutions coverage to (c�1) photon
number.

tions. After 20⌧ , both tend toward zero photon number and maintain an identical
number of excited atoms – b/a (Figure 6). For b/a < 1, the system has more losses
than gains and, hence, cannot sustain laser photons in the cavity. Interestingly, in
the model, atoms are maintain their excitation and are releasing laser photons, but
this is exactly canceled by the losses due to scattering and mirror transmission.

The system bifurcates and two solutions appear as b/a is increased above 1. One
of the solution previously existed and is now a saddle point (no lasing), but the new
solution (lasing) is stable. Below, we plotted the phase space for the two-dimensional
laser model (Figure 7). All solutions (except those starting with x0 = 0) appear to
converge to the lasing solution. That the previous solution is now a saddle point
is interesting. Along all directions, except if x0 = 0, the system will sustain laser
photons in the cavity. That is, there must exist at least a single photon in the
system to produce lasing. This is generally possible because of thermal fluctuations
in the medium. With some probability, a few atoms are already excited and emitting
photons. Hence, the system is typically primed for lasing.

We obtained numerical solutions for the model for two choices of initial condi-
tions. After 20⌧ , both tend toward x = b � a and y = 1. If b/a > 1, the system
has more gains than losses and can, thus, sustain laser photons in the cavity for
indefinitely (Figure 8).

4 Conclusions

In this paper, we investigated model for a laser that accounts for medium gain, losses
through mirrors and scattering, spontaneous emission of atoms, and pumping. The We simply summarize

the results from the
model in this section.model predicts, in general, if the e↵ects of pumping, gain, atomic decay outweigh

losses through scattering and mirrors, lasing can occur. This is true regardless of
initial conditions except for the case where there are no laser photons in the cavity to
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0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

x

y

(a) Low gains and high losses (b/a < 1)
produce no lasing.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

x

y

(b) Two trajectories started with
hx0, y0i = h0.1, 0i and hx0, y0i = h2, 1i.

Figure 5: Phase space plots of the two-dimensional laser model (b/a = 0.9). (a) In
a two-dimensional system, all solutions (blue line) converge to zero photon number
(red dot). (b) A series of particular solutions (orange lines) follow the di↵erent phase
space trajectories, but converge to the same solution (red dot).

start. However, such a situation is generally unphysical given thermal fluctuations
in the cavity.
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(a) Trajectories started with hx0, y0i =
h0.1, 0i.
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(b) Trajectories started with hx0, y0i =
h2, 1i.

Figure 6: Plots of dimensionless photon number (x) and dimensionless excited atom
number (y) versus time for the two-dimensional laser model. Regardless of initial
conditions, all solutions converge to zero photon number (no lasing).

Contributions to the work

Danny did most of the work including the coding and the writeup. Steve o↵ered This section will help
us decide how to
award credit. Make
sure that you work
together to avoid our
outcome.

some suggestions, but not many were included in the main manuscript. He did go
over final draft and o↵ered helpful suggestions, including catching an algebraic error.
We both agree that Danny should receive a higher grade on the assignment.
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(a) Trajectories started with hx0, y0i =
h0.1, 0i.
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(b) Trajectories started with hx0, y0i =
h2, 1i.

Figure 7: Phase space plots of the two-dimensional laser model (b/a = 1.5). (a) In a
two-dimensional system, almost all solutions (blue lines) converge to (b� a) photon
number (green dot) and run away from zero photon number (red dot). (b) A series
of particular solutions (orange lines) follow di↵erent phase space trajectories. One
trajectory (no photons in cavity to begin with) converges to zero photon number.
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(a) Trajectories started with hx0, y0i =
h0.1, 0i.
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(b) Trajectories started with hx0, y0i =
h2, 1i.

Figure 8: Plots of dimensionless photon number (x) and dimensionless excited atom
number (y) versus time for the two-dimensional laser model. Regardless of initial
conditions, all solutions converge to (b� a) photon number (no lasing).
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<< PlotLegends6`

a = 1; b = 0.9; tf = 20;
H*v=StreamPlot@8xHy-1L,-x*y-a*y+b<,8x,0,2<,8y,0,2<,
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v = StreamPlot@8x Hy - 1L, -x * y - a * y + b<, 8x, 0, 2<, 8y, 0, 2<, StreamPoints Ø Fine,
FrameLabel Ø 8"x", "y"<, FrameStyle Ø Directive@Thick, FontSize Ø 28D,
ImageSize Ø 8500, 500<, ImageMargins Ø 0D;

s = NDSolve@8x'@tD ã x@tD Hy@tD - 1L, y'@tD ã -x@tD * y@tD - a * y@tD + b, x@0D ã 0.1, y@0D ã 0<,
8x, y<, 8t, 0, tf<D;

s2 = NDSolve@8x'@tD ã x@tD Hy@tD - 1L, y'@tD ã -x@tD * y@tD - a * y@tD + b, x@0D ã 2, y@0D ã 1<,
8x, y<, 8t, 0, tf<D;

Plot@8x@tD ê. s, y@tD ê. s<, 8t, 0, tf<, AxesLabel Ø 8"t"<, PlotRange Ø 880, tf<, 80, 2<<,
AxesStyle Ø Directive@Thick, LargeD, PlotStyle Ø 8Thick<, ImageSize Ø 8500, 500<,
ImageMargins Ø 0, PlotLegend Ø 8"x", "y"<, LegendTextStyle Ø FontSize Ø 28D

Plot@8x@tD ê. s2, y@tD ê. s2<, 8t, 0, tf<, AxesLabel Ø 8"t"<, PlotRange Ø 880, tf<, 80, 2<<,
AxesStyle Ø Directive@Thick, LargeD, PlotStyle Ø 8Thick<, ImageSize Ø 8500, 500<,
ImageMargins Ø 0, PlotLegend Ø 8"x", "y"<, LegendTextStyle Ø FontSize Ø 28D

p = ParametricPlot@88x@tD, y@tD< ê. s<, 8t, 0, tf<,
PlotRange Ø All, PlotStyle Ø 8Orange, Dashed, Thick<,
AxesLabel Ø 8"x", "y"<, AxesStyle Ø Directive@Thick, FontSize Ø 28DD;

p2 = ParametricPlot@88x@tD, y@tD< ê. s2<, 8t, 0, tf<, PlotRange Ø All,
PlotStyle Ø 8Orange, Dashed, Thick<, AxesLabel Ø 8"x", "y"<,
AxesStyle Ø Directive@Thick, FontSize Ø 28DD;

pts = Graphics@8PointSize@LargeD, Red, Point@880, b ê a<, 8b - a, 1<<D<D;
Show@v, ptsD
Show@v, p, pts, p2D
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a = 1; b = 1.5; tf = 20;
H*v=StreamPlot@8xHy-1L,-x*y-a*y+b<,8x,0,2<,8y,0,2<,

AxesLabelØ8x,y<,StreamPointsØFine,VectorPointsØ10,VectorStyleØRed,
FrameLabelØ8x,y<,FrameStyleØDirective@FontSizeØ28DD;*L

v = StreamPlot@8x Hy - 1L, -x * y - a * y + b<, 8x, 0, 2<, 8y, 0, 2<, StreamPoints Ø Fine,
FrameLabel Ø 8"x", "y"<, FrameStyle Ø Directive@Thick, FontSize Ø 28D,
ImageSize Ø 8500, 500<, ImageMargins Ø 0D;

Show@v, pts, pts2D
s = NDSolve@8x'@tD ã x@tD Hy@tD - 1L,

y'@tD ã -x@tD * y@tD - a * y@tD + b, x@0D ã 0.1, y@0D ã 0<, 8x, y<, 8t, 0, tf<D;
s2 = NDSolve@8x'@tD ã x@tD Hy@tD - 1L, y'@tD ã -x@tD * y@tD - a * y@tD + b, x@0D ã 2, y@0D ã 1<,

8x, y<, 8t, 0, tf<D;
s3 = NDSolve@8x'@tD ã x@tD Hy@tD - 1L, y'@tD ã -x@tD * y@tD - a * y@tD + b, x@0D ã 0, y@0D ã .2<,

8x, y<, 8t, 0, tf<D;
p3 = Plot@8x@tD ê. s, y@tD ê. s<, 8t, 0, tf<, AxesLabel Ø 8"t"<, PlotRange Ø 880, tf<, 80, 2<<,

AxesStyle Ø Directive@Thick, LargeD, PlotStyle Ø 8Thick<, ImageSize Ø 8500, 500<,
ImageMargins Ø 0, PlotLegend Ø 8"x", "y"<, LegendTextStyle Ø FontSize Ø 28D

p4 = Plot@8x@tD ê. s2, y@tD ê. s2<, 8t, 0, tf<, AxesLabel Ø 8"t"<,
PlotRange Ø 880, tf<, 80, 2<<, AxesStyle Ø Directive@Thick, LargeD,
PlotStyle Ø 8Thick<, ImageSize Ø 8500, 500<, ImageMargins Ø 0,
PlotLegend Ø 8"x", "y"<, LegendTextStyle Ø FontSize Ø 28D

p = ParametricPlot@88x@tD, y@tD< ê. s<, 8t, 0, tf<, PlotRange Ø All,
PlotStyle Ø 8Orange, Dashed, Thick<, AxesLabel Ø 8"x", "y"<,
AxesStyle Ø Directive@Thick, FontSize Ø 28DD;

p2 = ParametricPlot@88x@tD, y@tD< ê. s2<, 8t, 0, tf<, PlotRange Ø All,
PlotStyle Ø 8Orange, Dashed, Thick<, AxesLabel Ø 8"x", "y"<,
AxesStyle Ø Directive@Thick, FontSize Ø 28DD;

p5 = ParametricPlot@88x@tD, y@tD< ê. s3<, 8t, 0, tf<, PlotRange Ø All,
PlotStyle Ø 8Orange, Dashed, Thick<, AxesLabel Ø 8"x", "y"<,
AxesStyle Ø Directive@Thick, FontSize Ø 28DD;

pts = Graphics@8PointSize@LargeD, Red, Point@880, b ê a<<D<D;
pts2 = Graphics@8PointSize@LargeD, Green, Point@88b - a, 1<<D<D;
Show@v, p, pts, p2, pts2, p5D
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a1 = Plot@t, 8t, 0, 5<, AspectRatio Ø 1,
AxesLabel Ø 8"a", "b"<, Filling Ø Bottom, FillingStyle Ø Lighter@PurpleD,
AxesStyle Ø Directive@Thick, FontSize Ø 28D, ImageSize Ø 8500, 500<, ImageMargins Ø 0D;

a2 = Graphics@Text@Style@"No Lasing\nLow\nPumpingêGain", FontSize Ø 28D, 83.5, 1.5<DD;
a3 = Graphics@Text@Style@"Lasing\nHigh\nPumpingêGain", FontSize Ø 28D, 81.5, 3.5<DD;
Show@a1, a2, a3D
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H* A case with lasing*L
c = 2;
r = Plot@c x ê Hx + 1L - x, 8x, 0, c<, PlotStyle Ø 8Thick<,

AxesLabel Ø 8"x", OverDot@"x"D<, AxesStyle Ø Directive@Thick, FontSize Ø 28D,
PlotRange Ø 880, 1<, 80, 0.2<<, Ticks Ø 880, 0.5, 1<, 80, 0.1, 0.2<<D;

pts2 = Graphics@8PointSize@0.05D, Red, Point@80, 0<D<D;
pts3 = Graphics@8PointSize@0.05D, Green, Point@8c - 1, 0<D<D;
Show@r, pts2, pts3D
Clear@x, tfD
tf = 20;
sol = NDSolve@8x'@tD ã c x@tD ê Hx@tD + 1L - x@tD, x@0D ã 0.5<, x, 8t, 0, tf<D;
Plot@x@tD ê. sol, 8t, 0, tf<, AxesStyle Ø Directive@Thick, FontSize Ø 28D,
AxesLabel Ø 8"t", "x"<, PlotStyle Ø 8Thick<,
PlotRange Ø 880, tf<, 80, 1<<, Ticks Ø 880, tf ê 2, tf<, 80, 0.5, 1<<D

p = ParametricPlot@88x@tD, x'@tD< ê. sol<, 8t, 0, tf<, PlotRange Ø All,
PlotStyle Ø 8Orange, Dashed, Thick<, AxesLabel Ø 8"x", OverDot@"x"D<,
AxesStyle Ø Directive@Thick, FontSize Ø 28DD;

Show@
r,
pts2,
p,
pts3D

0 0.5 1x0

0.1

0.2
x°

0 10 20t0

0.5

1
x

12   Laser_Model_SP12_2.nb



0 0.5 1x0

0.1

0.2
x°

H* A case with no lasing*L
c = 0.9;
r = Plot@c x ê Hx + 1L - x, 8x, 0, c<, PlotStyle Ø 8Thick<,

AxesLabel Ø 8"x", OverDot@"x"D<, AxesStyle Ø Directive@Thick, FontSize Ø 28D,
PlotRange Ø 880, 1<, 8-0.8, 0<<, Ticks Ø 880, 0.5, 1<, 8-.8, -0.4, 0<<D;

r2 = Plot@c x ê Hx + 1L - x, 8x, 0, c<, PlotStyle Ø 8Thick<,
AxesLabel Ø 8"x", OverDot@"x"D<, AxesStyle Ø Directive@Thick, FontSize Ø 28DD;

pts2 = Graphics@8PointSize@0.05D, Red, Point@880, 0<, 8c - 1, 0<<D<D;
Show@r, pts2D
Clear@x, tfD
tf = 20;
sol = NDSolve@8x'@tD ã c x@tD ê Hx@tD + 1L - x@tD, x@0D ã 0.1<, x, 8t, 0, tf<D;
Plot@x@tD ê. sol, 8t, 0, tf<, AxesStyle Ø Directive@Thick, FontSize Ø 28D,
AxesLabel Ø 8"t", "x"<, PlotStyle Ø 8Thick<,
PlotRange Ø 880, tf<, 80, 1<<, Ticks Ø 880, tf ê 2, tf<, 80, 0.5, 1<<D

p = ParametricPlot@88x@tD, x'@tD< ê. sol<, 8t, 0, tf<, PlotRange Ø All,
PlotStyle Ø 8Orange, Dashed, Thick<, AxesLabel Ø 8"x", OverDot@"x"D<,
AxesStyle Ø Directive@Thick, FontSize Ø 28DD;

Show@
r,
pts2,
pD
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