A common way to write a function as a Fourier series is:

\[f(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega t) + \sum_{n=1}^{\infty} b_n \sin(n\omega t) \]

(1)

Part 1
Sketch \(f(t) \) for the following cases:
(Please label the axis and include labeled tick marks)

a) \(a_0 = 2, \) all the other \(a_n \)'s and \(b_n \)'s = 0.

b) \(a_0 = 1, b_1 = 2, \) all the other \(a_n \)'s and \(b_n \)'s = 0. Assume \(\omega = 1 \) in Equation (1).
c) $a_2 = 3$, all the other a_n’s and b_n’s = 0. Assume $\omega = 1$ in Equation (1).

Part 2

$$f(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega t) + \sum_{n=1}^{\infty} b_n \sin(n\omega t)$$ \hspace{1em} (1)

Given $f(t)$, as written or drawn below, tell us, without calculations, anything you know about the a_n’s and b_n’s. You can just answer qualitatively – are some definitely zero, positive, negative? Assume $\omega = 1$ in Equation (1).

a) $f(t) = 3\cos(17t)$

What do you know about the a_n’s and b_n’s?

b)

What do you know about the a_n’s and b_n’s?
c) \(f(t) = \begin{cases} 1, & (|t| < \frac{\pi}{2}) \\ -1, & (\pi > |t| > \frac{\pi}{2}) \end{cases} \), outside this region it repeats, so \(f(t + 2\pi) = f(t) \).

What do you know about the \(a_n \)'s and \(b_n \)'s? (Hint: it might help to draw this function over a couple of periods in both positive and negative \(t \).)

Part 3

Given the function above for \(f(t) \), what would you choose for \(\omega \) in the general form for the Fourier series:
\[
 f(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega t) + \sum_{n=1}^{\infty} b_n \sin(n\omega t)
\]?

Please explain your answer:
TUTORIAL: FOURIER SERIES

Bonus – (Do this if you finish the other parts and still have time)

\[f(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega t) + \sum_{n=1}^{\infty} b_n \sin(n\omega t) \]

1) For \(f(t) = 2 \sin(15t) \), what are some possible values of \(\omega \) that would work in the formula above? For some of these \(\omega \)'s, what do you know about the \(a_n \)'s and \(b_n \)'s?

2) What is the period, \(T \), of \(f(x,t) = 3 \cos\left(\frac{\pi b}{3} x + \frac{2}{\pi a} t\right) \)?

3) Without calculation, what do you know about the \(a_n \)'s and \(b_n \)'s for \(f(t) \)?