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Phys3310 HW9, Due start of class Wed Oct 29 
 
Q1. ITERATING FIELDS 
Griffiths solved the problem of a dielectric sphere in a uniform external field in Example 4.7, 
p.186, using Separation of Variables and applying boundary conditions. There's another 
approach, which in some ways is perhaps conceptually simpler. 
 
A) You've put the sphere into a uniform external field E0, so it would be logical (but wrong) to 
assume that the polarization of the dielectric would just be simply P=ε0χeE0. (Briefly, why is 
that wrong?) Go ahead and assume it, as a "first approximation": let's call it P0. Now this 
polarized sphere generates its own additional induced E field, call that E1. What is that field? 
(You don't have to rederive it from scratch; Griffiths has derived the E field in a sphere created 
by a uniform polarization of that sphere.)  Now E1 will modify the polarization by an additional 
amount, call it P1.  What's that? That in turn will add in a new electric field by an additional 
amount E2. And so on. The final, total, "real" field will just be Etot = E0+E1+E2+...  
Work it out, and check/compare your answer with Griffiths result at the end of Ex 4.7 (p. 188)  

You will need the handy trick for summing the infinite geometric series: xn

n=0

∞

∑ =
1

1 − x
.  

If that looks mysterious to you, you should convince yourself that it's correct by multiplying both 
sides of the equation by (1 – x). 
 
B) If the sphere was made of Silicon (see Table 4.2 in Griffiths, p.180), compare the "first 
approximation" for P0 with the true result for polarization.  How important was it to go through 
the summation? In what limit, large or small εr, does this summing procedure make a big 
difference? 
 
Q2. SUPERPOSITION 
Consider a large slab (infinite in the xy directions) of 
dielectric material which has thickness d, and has uniform 
polarization P =    . Assume there are no free charges 
anywhere (so this polarization P is permanent). The 
polarization is perpendicular to the surfaces of the slab.  

k ˆ
d P z

A) Compute the electric field everywhere due to the charges arising from the polarization of the 
slab. 
B) Now, assume that at the midplane of the sheet is a 
spherical hole of radius a. The inside of the bubble 
contains vacuum: it has zero polarization. Find the net 
electric field everywhere inside the hole.  

d a P 

Hint: Carving out a cavity is the same as superimposing 
an object of the same shape but opposite polarization. 
C) Assume there are still no free charges anywhere. Find the bound surface charge on the 
surface of the hole. Then, find (or at least describe) the electric field outside the slab.  
Hints: Griffiths' Examples 3.9 and 4.2 may be useful. 
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Q3. DERIVING CLAUSIUS-MOSSOTTI 
In a linear dielectric, the polarization is proportional to the field: 0 eP = ε χ    (Eqn 1).  If the 
material consists of atoms (or non-polar molecules), the induced dipole moment of each atom is 
proportional to the field: p   (Eqn 2). Question: What is the relation between the atomic 
polarizability α and the susceptibility χ

E= α

e ? 
 
If n = number of atoms per volume, then the polarization P n p n E= = α .  So one's first 

reaction is to compare equations (1) and (2) and conclude that e
0

n α
χ =

ε
.   This is almost 

correct, if the density is low, but closer inspection reveals a subtle problem.  The E-field in 
equation (1) is the total macroscopic field in the medium. But the E-field in equation (2) is the 
field due to everything, except the atom under consideration.  Call this field Eelse . Equation (2) 
should therefore be rewritten as elsep E= α .  Imagine that the space allotted to each atom is a 
sphere of radius a.  Show that  

else
0

nE 1 E
3

⎛ ⎞α
= −⎜ ⎟ε⎝ ⎠

. 

 

Use this to conclude that 0
e

0

n /
1 (n / 3 )

α ε
χ =

− α ε
 , and show that this is equivalent to 

0 r

r

3 1
n 2

⎛ ⎞ε ε −
α = ⎜ ε +⎝ ⎠

⎟ .  This last equation is called the Clausius-Mossotti formula. 

 
Under what conditions can the  Claussius-Mossotti formula be replaced with the naive 

expectation,  e
0

n α
χ =

ε
? 

 
Q4.  APPLYING CLAUSIUS-MOSSOTTI 
Use the Clausius-Mossotti equation (which you just derived in the previous problem) to 
determine the polarizability of atoms in air (which is largely N2). Table 2 in the book gives 
dielectric constants for N2 and “air” as a separate entries but the numbers are basically identical.  
Combine this result with the simple classical calculation we did in lecture (Example 1 in chapter 
4) to estimate a typical radius of an air molecule. 
 
 
Q5. CURRENT DENSITIES: 
A) A solid cylindrical straight wire of radius a has a current I flowing down it. If that current is 
uniformly distributed over the outer surface of the wire (none is flowing through the "volume" 
of the wire; it's all surface charge), what is the surface current density K? 
B) Suppose that current does flow throughout the volume of the wire, in such a way that the 
volume current density J grows quadratically with distance from the central axis, what then is 
the formula for J everywhere in the wire?  
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C) A CD has been rubbed so that it has a fixed, constant, uniform surface electric charge density 
σ everywhere on its top surface. It is spinning at angular velocity ω  about its center (which is at 
the origin).  What is the surface current density K at a distance r from the center? 
D) A sphere (radius R, total charge Q uniformly distributed throughout the volume) is spinning 
at angular velocity ω  about its center (which is at the origin) What is the volume current density 
J at any point (r, θ, φ) in the sphere?  
E) A very thin plastic ring has a constant linear charge density, and total charge Q. The ring has 
radius R and it is spinning at angular velocity ω  about an axis thru its center (which is at the 
origin) and perpendicular to the plane of the ring. What is the current I, in terms of given 
quantities?  
 
Q6.  In a mass spectrometer, a particle of 
known charge q and unknown mass m enters 
a vacuum chamber filled with constant 
uniform magnetic field .  It passes 
between the closely spaced plates of a 
capacitor with electric field ith 
the same B-field as elsewhere in the chamber) 
and emerges with velocity . Its 
semicircular trajectory then carries to a point 
on the detector a distance s from the exit of 
the capacitor, as shown. 

ˆB Bz=

ˆE E= −

ˆv v y=

vacuum chamber 

A) The capacitor acts as a velocity selector.  
Explain how it works and relate the speed v 
of the emerging particle to E and B. 
B) How is the mass m related to the known quantities q, E, B, and s?  (Gravity can be ignored 
since it is very weak compared to the forces due to E and B.)  Given the geometry shown, will 
this spectrometer work for + charges only, – charges only, or both + or – charges? 
 
Q7. MAGNETIC MOTION: 
Griffiths Problem 5.2, parts (a) and (b). [You can skip part (c).] For parts (a) and (b), is kinetic 
energy constant with time? (Where it isn't, very briefly explain) Also, for part a: the result is in 
many respects quite special - give some physical example(s) where this result could be useful 
for some practical purpose.   
 

s 
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