   INSTRUCTORS MANUAL:  In-class TUTORIAL 3
This is a modified version of the full Tutorial 3 which has been adapted to be given in one shorter chunk during lecture, rather than in a separate 50 min recitation.  

Goals:
1. See a relationship between mathematical representation of E-field and graphical (Learning Goal 2)
2. Understand what charge distribution causes an electric field (Learning Goal 1)
3. To decide if a mathematically plausible field is physically possible as well. (Learning Goal 1)
4. Path independence of voltage difference (Learning Goal 5c)
5. See the connection between calculating potential difference and measuring it with a voltmeter. (Learning Goal 1)
6. Apply physics knowledge to a real-world example.
7. Estimate order of magnitude of a real-world problem (Learning Goal 5a)
This tutorial is based on:
· Oregon State University “Measuring Voltage” activity – Corinne Manogue
· Written by Darren Tarshis, Steven Pollock, and Stephanie Chasteen, with modifications by Ed Kinney, Michael Dubson, Bethany Wilcox and Markus Atkinson.


Reflections on this Tutorial
Total Time: ~ 25 minutes. Slightly less than 10 min to work through the first page at the board, slightly more than 10 min for students to work through the second page, and roughly 5 min to summarize at the board and answer questions.  

Page 1		Working through this part at the board reduces the amount of time the tutorial takes.  The original version of the tutorial had the students working through this on their own but would require probably 10-15 additional min.  The instructor reviewed briefly where the E-field equations came from and how to express the vector dr for the line integral.

Page 2		Most of the students had no trouble sketching the E-field but many had a hard time with the potential.  Most of the discussion revolved around what happened at the surface of the sphere.  A minority of students had some trouble knowing how to sketch the potential inside the sphere.  Explicit prompting was often necessary to get students to make meaningful connections between E and V particularly when it came to realizing that a discontinuous V is non-physical and a cusp in V will give a discontinuous E.  These discussions were very productive.  

Relevant Homework Problems 

Divergence and Curl



Consider an electric field E =   (Please note the numerator is not : this is NOT the usual E field from a point charge at the origin, which would give , right?!) 
a) - Calculate the divergence and the curl of this E field.
 - Explicitly test your answer for the divergence by using the divergence theorem. 
 (Is there a delta function at the origin like there was for a point charge field, or not?)
 - Explicitly test your answer for the curl by using the formula given in Griffiths problem 1.60b, page 56.
b) What are the units of c? What charge distribution would you need to produce an E field like this? Describe it in words as well as formulas. (Is it physically realizable?)

Allowed E fields
Which of the following two static E-fields is physically impossible. Why?

i) 

ii) 
where c is a constant (with appropriate units)  
For the one which IS possible, find the potential V(r), using the origin as your reference point (i.e. setting V(0)=0) 
- Check your answer by explicitly computing the gradient of V.  


Voltage Path Integrals
a) 
For the electric field, , calculate the potential difference you would expect to measure between two arbitrary points (x1, y1, 0) and (x2, y2, 0) for this electric field. Choose two different paths to integrate over, and compare these answers: 
1) a segment from x1 to x2 at y1 followed  by a segment from y1 to y2 at x2,                
2) a segment from y1 to y2 at x1 followed  by a segment from x1 to x2 at y2. 
In-Class TUTORIAL 3:  ELECTRIC POTENTIAL
b) 
Are the two path integrals from part (iii.) equal?  Should they be? (Note that when you do a line integral  this is over a specific path!  It doesn’t matter which path, but you must choose a path.)
In-class Tutorial 3	Instructor’s Manual	
© University of Colorado - Boulder		Contact:  Steven.Pollock@Colorado.EDU	

 TUTORIAL 3 
ELECTRIC POTENTIAL
i) Consider a  uniformly charged (solid) sphere with total charge Q and radius R, centered at the origin. You solved for E(r) in a recent homework, and should have found the following:         

				Which aspects of this formula now seem “obvious” to you? 


				What’s the principle of physics used to generate this formula?


(If you’re not sure of any details, take the time at home to rederive  it from scratch! )
ii) 
The definition of voltage (potential) says  .

Choosing V()=0 (i.e. setting “O”=  in this formula), this is easy enough to find if r>R:
- Don’t just accept the details - check my math please!
Talk with your neighbors, or us, about any piece that seem at all confusing to you.
iii) 
If r<R, I need to break that integral up into two pieces (why?),  giving:           
Work through all 5 lines. Make sure you see what is going on at each step . 
Talk with your neighbors, or ask us about anything that seem at all confusing to you! 


iv) In the space below, sketch E(r) and V(r).  (E should be easy. V is harder, be careful!) 
E(r)

[bookmark: _GoBack] - Is E(r) continuous? Is V(r)? Should they be?  Why/why not?


 - Are their derivatives continuous? Should they be? 


 - Do the signs make sense everywhere ? Explain!
 

 - Is the behavior of E(r) and V(r) at large r correct? 


 - What’s the “slope” of V(r) at the origin? (What should it be?) 
R
r
R
r
V(r)


Now let the origin (r=0) be your choice of zero voltage, and re-sketch this V as a function of r.
V(r)


R
r




Explain how(if) the choice of zero voltage at the origin changes the electric field.
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