   INSTRUCTORS MANUAL:  TUTORIAL 7b
Boundary Conditions
Goals
1. Review the derivation of boundary conditions using “Stokes loops” and “Gauss’ law”
2. Practice with vector calculus, as well as limiting procedures
3. Communicate reasoning/thought process to group members, LA, and Instructor (learning goal 4) 

This tutorial is based on:
· Tutorial from Brad Ambrose, Grand Valley State University
· Written by Brad Ambrose, reworked slightly by Steven Pollock. 
Tutorial Summary: 
Students use stokes’ loop and pillbox to derive the usual boundary conditions (E║ is continuous, D┴ is continuous if no free charges, and E┴ is not continuous, with discontinuity given by surface charge) 


Some reflections on this tutorial:
Total Time: ~20 minutes.  
The tutorial needs clear setup (I just altered the text so it’s more self-contained, but this probably still needs to be clearly stated up front):  The setup is, a small chunk of neutral linear dielectric (no bound charges around). That’s all you know – maybe there are very complicated Q’s off to one side of the picture, polarizing this thing like crazy in a very complicated way. So there is an E field (created by the outside charges AND the bound charges in this chunk). Are they continuous within the picture? I’m not sure – there are bound charges there! Let’s work it out…
Part A.  Students aren’t seeing that “dV” is not defined here, it’s a loop, a 2-d loop. It was ok to let them wrestle a bit, many realized the first two integrals are the same, but were TRYING to apply them (somehow), even though we do not have a closed surface. 
Many had forgotten/were not convinced that the integral of E dot dl vanishes for ALL loops in electrostatics. Ambrose points out that many students think it is positive, if sigma is positive. 	
Part B. Students wondered whether the loop has to be small (no if you just want to say its zero, but yes to extract useful information). There was debate about what “parallel” or “perpendicular” means, about why Delta Z-> 0 but Delta x is small but not vanishing, and what role that plays. (We want to argue E is not VARYING across delta x, so the integral becomes E dot delta x, but we want delta z to vanish so the vertical legs contributed nothing)  Many students “knew the answer” (but many of them thinking THIS page was about E_perp relation, i.e. not working it out, just remembering formulas) 
I talked them through (after about 8 minutes) the solution, some were seeing it, others didn’t quite understand the sign issue that E_x dot delta x gives you a minus sign on one leg. Still others simply don’t remember and can’t reproduce the “game” here, and were pretty much stuck. (
Surprised to see some students arguing to themselves that we only learn about the perpendicular component when we dot with delta x! )
In-Class TUTORIAL 7b – Boundary Conditions	
Part C. Pillbox construction not a problem. But, moving on from there was a little slow. We ran out of time (only gave them 15 minutes total), it clearly needs more! 
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TUTORIAL 7b
BOUNDARY CONDITIONS FOR E & D FIELDS
Stokes loops and Gaussian pillboxes
[bookmark: _GoBack]Imagine zooming in toward the boundary of a neutral, non-conducting object exposed to air.  
There could be a surface charge density  at the object’s surface and a volume charge density  underneath the object’s surface. (Perhaps there are some very complicated charges JUST OUTSIDE the picture!) 


We are interested in determining what might be different—and what might be the same—
about the fields just above the surface (e.g. ) and that just below ().
Consider the imaginary rectangular loop shown “dashed” below.   The legs of the loop, (length ∆x), are parallel to the interface.  The other two legs, ( height ∆z) are perpendicular to the interface.
Which of the following quantities would be relevant for the imaginary loop you have drawn, and what can be said about the value of that quantity? 



 ?		 ?		 ? 









Now imagine shrinking the loop in such a way that ∆z  0, and the loop continues to straddle the interface the whole time.  On the basis of your answers above, we can conclude a useful relationship between Eabove and Ebelow, but only with respect to either the component of the field perpendicular to the interface or the component that is parallel to it.
•	Which component can we conclude a useful relationship about, and what exactly is that relationship?

•	Why can we not say anything about the other component of the field? 

Now we start over, with another strategy.  This time, imagine a Gaussian “pillbox” that straddles the interface between the air and the object.  The endcaps of the pillbox, (area ∆A) are parallel to the interface.  The height of the pillbox is ∆z.  Draw a sketch depicting the Gaussian pillbox. 






As you did for the imaginary loop, identify which quantity (or quantities) would be relevant for the Gaussian pillbox you have drawn, and state what would be true about the value of it (them).
This time, let’s also consider the D field. 
Assume that this surface is a neutral dielectric, with only bound charges in and on it.



      ?			    ?		      	    ? 





      ?			    ?			    ?

Now imagine shrinking the pillbox in such a way that ∆z  0, with the pillbox always containing an area ∆A of the surface the entire time.  On the basis of your answers above:
•	Which component can we conclude a useful relationship about, and what exactly is that relationship?  (Big hint:  We now need to remember the charge density  on the surface!)
Consider E and D fields separately. Do they give the SAME result? 









•	Why can we ignore the other component of the fields in the process? 



(If you have some time!) Repeat this analysis for an interface between air and the surface of a conductor (rather than a nonconducting object).  What do your results suggest about E and D fields (magnitude and direction) just above the surface of a conductor?  Explain.  
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