   INSTRUCTORS MANUAL:  TUTORIAL 6
Separation of Variables & Multipole Expansion

This is a modified version of the shortened Tutorial 6 which has been adapted to be given in one or two shorter chunks during lecture, rather than in a separate 50 min recitation.

Goals:
1. Review older method of calculating potential, and connect it to newer material (course scale learning goals 5c, 10)
2. Expand solution into Taylor series (course scale learning goal 5a)
3. Understand where (and physically why) solutions to Laplace’s equation are valid (course scale learning goal 1)
4. See the interconnected nature of “separate” topics in E&M (course scale learning goal 3)
5. Introduce multipole expansion (by connecting it to older material)
This tutorial is based on:
· Written by Darren Tarshis, Steven Pollock, and Stephanie Chasteen, with modifications by Ed Kinney, Michael Dubson Rachel Pepper, and Markus Atkinson. Signifincantly shortened for use in class by SJP in 2013. 
Tutorial Summary: 
Students are given the solution (and Taylor expansion) for this charge distribution along the z-axis. They must explain where (in space) the separable solutions to Laplace’s equation are valid. Then they compare the terms of their Taylor series to the terms that result from separation of variables. Finally, they see how these terms are related to monopole and dipole moments. 

There are powerpoint slides animating the solution on page 1 which are helpful to get students moving quickly into the meat of this Tutorial. 



Reflections on this tutorial
[bookmark: _GoBack]Total Time: ~20 minutes.  After roughly 15 min only a small fraction was working through the last page.  The recap/summary of the whole tutorial took an additional ~5 minutes to walk the whole class through it.  Alternatively, Parts 1 and 2 could be given as separate activities.  
Part 1 		In previous versions, students spent a great deal of time on page 1. For our “in-class” version, we short circuited that. (The problem had been on an exam the previous week). We also short-circuited the Taylor expansion, but emphasized to students that we expect them to be able to derive the 2nd order terms, not memorizing them. 
Question 2 	Generated significant discussion. Most (if not all) the students didn’t know, or had forgotten, where this form for the potential comes from. They knew that it was from separation of variables, but instructors may need to help them remember that it results from solving Laplace’s equation. Once Laplace’s equation was written, many students are quick to say that it’s where there is no charge.  Among faculty there has been some discussion about regions of validity.  The given equation is certainly valid for r>d (and then the boundary condition at infinity eliminates all non-negative powers of r)  But for r<d, since there is charge present, Laplace's equation is not valid throughout this region, and it is not guaranteed that this form of the solution is appropriate.  (You might consider a simpler, related problem of a single point charge at point z=-d . You will find that outside r>d, you want only inverse powers of r, but inside r<d, you want only positive powers.  However, the details of this justification are perhaps beyond the level of this course!) 
For our in-class activity, we found that after <5 minutes, it was appropriate to “pull the class together”, explain the solution to this part, and encourage them to move on, though some still returned to this idea in later discussion.  
Question 3 Most students know that the A’s have to be zero, though some don’t recognize right away that the P’s were 1 on the z-axis. Students didn’t think right away to match these terms with their Taylor series terms, but eventually saw how it made sense.  One thing to watch for is that in their final answer, students leave out the Legendre polynomials. They either forget about them since they were 1 on the z-axis, or they think that they vanish.  To prompt students to compare these terms to the terms from their Taylor expansion, the words “boundary condition” could be used. By now, students are very familiar with applying boundary conditions. They could be told that one boundary condition is that on the z-axis, their solution must match what they solved previously and Taylor expanded.  This is the section that most of the students were working on when the hour was over.
Part 3		About 25% of the class was working on the 3rd page. This is the “punch line” of the tutorial. For those that did make it this far, question (i) seemed very clarifying when their monopole moment was Q, and dipole made sense physically.   Question (ii) was a real puzzler for the students. They all agreed that the monopole wouldn’t change, since shifting it doesn’t change the total amount of charge. Some students just couldn’t make sense of why the dipole term vanishes. One student kept saying, “The choice of the origin shouldn’t change what’s happening physically.” They could see that the dipole term vanishes mathematically, but still couldn’t justify it physically.


Relevant Homework Problems
Separation of Variables:  Disk
A disk of radius R has a uniform surface charge density . Way back on Set #2 you found the E-field along the axis of the disk (and on the midterm, you again solved a very similar (but harder) version of this where  was not uniform). You can check for yourself by direct integration, (but don't have to): I claim that along the z axis, (i.e. =0), 


i) Find the potential away from the axis (i.e nonzero ) , for distances r > R, by using the result above and fiddling with the Legendre formula, Griffiths' 3.72 on page 140. You will in principle need an infinite sum of terms here - but for this problem, just work out explicitly what the first two *non-zero*  terms are.  

In-Class TUTORIAL 6:  ZEN & THE ART OF MULTIPOLE EXPANSION
ii) Griffiths Chapter 3.4 talks about the "multipole expansion". Look at your answer to part i, and compare it to what Griffiths says it should look like (generically) on page 148. Discuss - does your answer make some physical sense? Note that there is a "missing term" - why is that?
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ZEN & THE ART OF MULTIPOLE EXPANSION
Separation of variables and multipole expansion are two sides of the same cosmic coin

Potential from a Segment of Charge
A short uniform line charge density  extends from the origin to the point (0,0,-d). 

Finiding V(r) everywhere (exactly) is a nasty problem (because curly R is a problem)!  
But, finding V(z) just on the z-axis is  straightforward.  (You worked it out on the exam!) 



Look over the lines above (now or at home), convince yourself that you could have worked that out! (The condition z>0 in line 2 just lets me safely argue that  |z-z’| = z-z’) 
We’ll USE this result to get a quick and simple approximation for V(r) far away from the origin!  When you’re “far away”, d/z <<1.  So, let’s define .   We have:   
In general, Taylor’s theorem says (for any function f(x)):


With f(x)=ln(x), and x0=1, I claim (please go home and CHECK THIS for yourself!) 


Use this to write the first two non-zero terms of V(z) ( in terms of z, rather than ) 



2) Consider the charge distribution on the other side of the page. This problem does not have spherical symmetry. Why can I still argue that the potential has the familiar form: ? 
(Specifically, in what regions of space does the solution look like this?)








3) The final trick here is that this “general” potential must MATCH your answer (on the bottom of the other side of the page) when  = 0 (i.e. points on the z-axis)!
USE that to figure out the first couple of A’s and B’s. 
(Do any terms vanish? )








Part 2 – Multipole expansion
A potential from localized charges can be expanded into the form:


i. For the problem you’ve been working on, what are the monopole and dipole moments? Do these answers make sense physically? 








ii. Which terms would change if the charge distribution were shifted up by d/2, so that it was centered on the origin?





iii. Does your answer to part ii make sense physically?  What is the physical significance of the dipole term when there is a net charge?
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