
  S-1 

Spin ½ 

Recall that in the H-atom solution, we showed that the fact that the wavefunction Ψ(r) is 

single-valued requires that the angular momentum quantum nbr be integer: l  = 0, 1, 2..   

However, operator algebra allowed solutions l  = 0, 1/2,  1,  3/2,  2…  

Experiment shows that the electron possesses an intrinsic angular momentum called spin 

with l = ½.  By convention, we use the letter s instead of  l for the spin angular 

momentum quantum number : s = ½.  The existence of spin is not derivable from non-

relativistic QM.  It is not a form of orbital angular momentum; it cannot be derived from 

.  (The electron is a point particle with radius r = 0.)   L r p= ×
G GG

Electrons, protons, neutrons, and quarks all possess spin s = ½.   Electrons and quarks are 

elementary point particles (as far as we can tell) and have no internal structure.  However, 

protons and neutrons are made of 3 quarks each.  The 3 half-spins of the quarks add to 

produce a total spin of ½ for the composite particle (in a sense, ↑↑↓ makes a single ↑).  

Photons have spin 1, mesons have spin 0, the delta-particle has spin 3/2.  The graviton 

has spin 2.  (Gravitons have not been detected experimentally, so this last statement is a 

theoretical prediction.) 

Spin and Magnetic Moment 

We can detect and measure spin experimentally because the spin of a 

charged particle is always associated with a magnetic moment.  Classically, 

a magnetic moment is defined as a vector µ associated with a loop of 

current.  The direction of µ  is perpendicular to the plane of the current loop 

(right-hand-rule), and the magnitude is 2i A i rµ = = π .   The connection 

between orbital angular momentum (not spin) and magnetic moment can 

be seen in the following classical model: Consider a particle with mass 

m, charge q in circular orbit of radius r, speed v, period T.  

µ 

( )2q 2 r q v q vi , v i i A r
T T 2 r 2 r

⎛ ⎞π
= = ⇒ = µ = = π =⎜ ⎟π π⎝ ⎠

q v r
2

 

r 
i 

i 

r  m, q 

4/26/2008  Dubson, Phys3220 



  S-2 

| angular momentum | = L = p r  =  m v r  ,  so   v r = L/m ,  and q v r q L
2 2 m

µ = = . 

So for a classical system, the magnetic moment is proportional to the orbital  angular 

momentum:  
q L (orbital)

2 m
µ =

GG
.  The same relation holds in a quantum 

system.  

In a magnetic field B, the energy of a magnetic moment is given by 

 (assuming zE B= − µ ⋅ = − µ
G B
G

ˆB Bz=
G

).  In QM, zL m= = .  Writing electron mass as 

me (to avoid confusion with the magnetic quantum number m) and q = –e  we have 

z
e

e m
2 m

µ = −
= ,  where m = − l .. +l.  The quantity B

e

e
2 m

µ ≡
= is called the Bohr 

magneton.  The possible energies of the magnetic moment in ˆB Bz=
G

 is given by   

orb z BE B= − Bmµ = − µ . 

 

For spin angular momentum, it is found experimentally that the associated magnetic  

moment is twice as big as for the orbital case:  
q S (spin)
m

µ =
GG

  (We use S 

instead of L when referring to spin angular momentum.)  This can be written 

z
e

e m 2
m

µ = − = − µ
=

B m m.  The energy of a spin in a field is spin BE 2 B= − µ  (m = 

±1/2) a fact which has been verified experimentally.  The existence of spin (s = ½) and 

the strange factor of 2 in the gyromagnetic ratio (ratio of to Sµ
GG )  was first deduced from 

spectrographic evidence by Goudsmit and Uhlenbeck in 1925. 

Another, even more direct way to experimentally determine spin is with a Stern-Gerlach 

device, next page 
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(This page from QM notes of Prof. Roger Tobin, Physics Dept, Tufts U.) 

Stern-Gerlach Experiment  (W. Gerlach & O. Stern, Z. Physik 9, 349-252 (1922). 
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∂
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Deflection of atoms in z-direction is proportional to z-component of magnetic moment 

µz, which in turn is proportional to Lz.  The fact that there are two beams is proof that l = 

s = ½.  The two beams correspond to m = +1/2 and m = –1/2.  If l = 1, then there would 

be three beams, corresponding to m = –1, 0, 1.  The separation of the beams is a direct 

measure of µz, which provides proof that z B2 mµ = − µ  

The extra factor of 2 in the expression for the magnetic moment of the electron is often 

called the "g-factor" and the magnetic moment is often written as z Bg mµ = − µ .  As 

mentioned before, this cannot be deduced from non-relativistic QM; it is known from 

experiment and is inserted "by hand" into the theory.  However, a relativistic version of 

QM due to Dirac (1928, the "Dirac Equation") predicts the existence of spin (s = ½) and 

furthermore the theory predicts the value g = 2.  A later, better version of relativistic QM, 

called Quantum Electrodynamics (QED) predicts that g is a little larger than 2.  The g-
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factor has been carefully measured with fantastic precision and the latest experiments 

give  g = 2.0023193043718(±76 in the last two places).  Computing g in QED requires 

computation of a infinite series of terms that involve progressively more messy integrals, 

that can only be solved with approximate numerical methods.  The computed value of g 

is not known quite as precisely as experiment, nevertheless the agreement is good  to 

about 12 places.  QED is one of our most well-verified theories. 

 

Spin Math 

Recall that the angular momentum commutation relations 

2
z i j k[L , L ] 0 , [L , L ] i L (i j k cyclic)= = =  

were derived from the definition of the orbital angular momentum operator: L r . p= ×
G G G

The spin operator S  does not exist in Euclidean space (it doesn't have a position or 

momentum vector  associated with it), so we cannot derive its commutation relations in a 

similar way.  Instead we boldly postulate that the same commutation relations hold for 

spin angular momentum: 

G

2
z i j[S ,S ] 0 , [S , S ] i S= = k= .   From these, we derive, just a before, that 

2 2 2
s s

3S s m s (s 1) s m s m
4

= + == s=         ( since s = ½ ) 

z s s s s
1S s m m s m s m
2

= = ±= =   ( since ms = −s ,+s   = −1/2, +1/2 ) 

Notation:  since s = ½ always, we can drop this quantum number, and specify the 

eigenstates of L2 , Lz by giving only the ms quantum number.  There are various ways to 

write this: 

1 1
2 2

s s

,
s m m ,

,

+ −
= = + −

↑ ↓

 

These states exist in a 2D subset of the full Hilbert Space called spin space. Since these 

two states are eigenstates of a hermitian operator, they form a complete orthonormal set 
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(within their part of Hilbert space) and any, arbitrary state in spin space can always be 

written as 
a

a b
b

⎛ ⎞
χ = ↑ + ↓ = ⎜ ⎟

⎝ ⎠
     (Griffiths' notation is a b+ −χ = χ + χ ) 

Matrix notation:
1 0

,
0 1

⎛ ⎞ ⎛ ⎞
↑ = ↓ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.   Note that 1 , 0↑ ↑ = ↓ ↓ = ↑ ↓ =  

If we were working in the full Hilbert Space of, say, the H-atom problem, then our basis 

states would be sn m mAA .  Spin is another degree of freedom, so that the full 

specification of a basis state requires 4 quantum numbers.  (More on the connection 

between spin and space parts of the state later.) 

 

[Note on language: throughout this section I will use the symbol Sz (and Sx , etc) to refer 

to both the observable ("the measured value of Sz is / 2+= ") and its associated operator 

("the eigenvalue of Sz is ").] / 2+=

 

The matrix form of S2 and Sz in the (z)m basis can be worked out element by element.  

(Recall that for any operator mn
ˆ ˆA , A m A n= .)  

2 2 23S , S 0 , etc.
4

↑ ↑ = ↑ ↓ ==     z z
1S , S 0 , etc.
2

↑ ↑ = + ↑ ↓ ==  

2 2
z

1 0 1 03 1S S
0 1 0 14 2

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

= =  

Operator equations can be written in matrix form, for instance, 

z

1 0 1 1
S

0 1 0 02 2
⎛ ⎞⎛ ⎞ ⎛ ⎞

↑ = + ↑ ⇒ = +⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
2
=  

We are going ask what happens when we make measurements of Sz , as well as Sx and 

Sy , (using a Stern-Gerlach apparatus).  Will need to know: What are the matrices for the 

operators Sx and Sy ?  These are derived from the raising and lowering operators: 
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( )
( )

1
x y x 2

1
x y y 2i

S S iS S S S
S S iS S S S

+ + −

− + −

= + = +
⇒

= − = −
 

To get the matrix forms of S+ , S− , we need a result from the homework: 

s s

s s

S s,m s (s 1) m(m 1) s, m 1

S s, m s(s 1) m(m 1) s, m 1
+

−

= + − + +

= + − − −

=

=
 

For the case s = ½, the square root factors are always 1 or 0.  For instance,  s = ½, 

m = −1/2  gives ( ) ( )( )31 1 1
2 2 2 2s (s 1) m(m 1) 1+ − + = − − = .  Consequently, 

S , S 0 and S , S 0+ + − −↓ = ↑ ↑ = ↑ = ↓ ↓ == = , leading to  

S 0, S ,  etc.+ +↑ ↑ = ↑ ↓ = =   and 

0 1 0 0
S S

0 0 1 0+ −

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= =              Notice that S+ , S− are not hermitian. 

Using ( ) ( )1 1
x y2 2iS S    and    S S S+ − + −= + = −S   yields 

x y

0 1 0 i
S S

1 0 i 02 2
−⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =     These are hermitian, of course. 

 

Often written:  S
2

= σ
G = G  , where are 

called the Pauli spin matrices. 

x y z

0 1 0 i 1 0
, ,

1 0 i 0 0 1
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

σ = σ = σ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Now let's make some measurements on the state 
a

a b
b

⎛ ⎞
χ = ↑ + ↓ = ⎜ ⎟

⎝ ⎠
.   

Normalization:   2 21 a bχ χ = ⇒ + = 1. 

Suppose we measure Sz on a system in some state 
a
b

⎛ ⎞
χ = ⎜ ⎟

⎝ ⎠
 .  Postulate 2 says that the 

possible results of this measurement are one of the Sz eigenvalues: / 2 or / 2+ −= = . 
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Postulate 3 says the probability of finding, say / 2−= , is 

( )
2

2 2a
Prob(find /2)  =  | 0 1 b

b
⎛ ⎞

− ↓ χ = =⎜ ⎟
⎝ ⎠

=  .  Postulate 4 says that, as a result 

of this measurement, which found / 2−= , the initial state χ collapses to ↓ . 

 

But suppose we measure Sx ?  (Which we can do by rotating the SG apparatus.)  What 

will we find?  Answer: one of the eigenvalues of Sx, which we show below are the same 

as the eigenvalues of Sz : .  (Not surprising, since there is nothing special 

about the z-axis.)  What is the probability that we find, say, S

/ 2 or / 2+ −= =

x = / 2+ = ?  To answer this 

we need to know the eigenstates of the Sx operator.  Let's call these (so far unknown) 

eigenstates (x) (x)and↑ ↓    (Griffiths calls them (x) (x)and
+

χ χ
−

 ).  How do we find 

these?  We must solve the eigenvalue equation: 

xS χ = λ χ , where λ are the unknown eigenvalues.  In matrix form this is,  

0 / 2 a a
/ 2 0 b b

⎛ ⎞⎛ ⎞ ⎛ ⎞
= λ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

=
=

   which can be rewritten  .  In linear 

algebra, this last equation is called the characteristic equation.   

/ 2 a
0

/ 2 b
−λ⎛ ⎞⎛ ⎞

=⎜ ⎟⎜ ⎟−λ⎝ ⎠⎝ ⎠

=
=

 

This system of linear equations only has a solution if 

/ 2 / 2
Det 0

/ 2 / 2
−λ −λ⎛ ⎞

= =⎜ ⎟−λ −λ⎝ ⎠

= =
= =

.   So  ( )22 / 2 0 / 2λ − = ⇒ λ = ±= =

As expected, the eigenvalues of Sx are the same as those of Sz (or Sy). 

Now we can plug in each eigenvalue and solve for the eigenstates: 

0 1 a a
a b

1 0 b b2 2
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⇒⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
=    ;       

0 1 a a
a b

1 0 b b2 2
⎛ ⎞⎛ ⎞ ⎛ ⎞

= − ⇒ =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
− .  

So we have (x) (x)1 11 1and
1 12 2

⎛ ⎞ ⎛ ⎞
↑ = ↓ =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
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Now back to our question: Suppose the system in the state (z) 1
0

⎛ ⎞
↑ = ⎜ ⎟

⎝ ⎠
, and we 

measure Sx.  What is the probability that we find, say, Sx = / 2+ = ?  Postulate 3 gives the 

recipe for the answer:  

( )
2

2 2(x) (z) 1 1
x 2 2

1
Prob(find S /2)  =  | 1 1 1/ 2

0
⎛ ⎞

= + ↑ ↑ = = =⎜ ⎟
⎝ ⎠

=  

Question for the student: Suppose the initial state is an arbitrary state 
a
b

⎛ ⎞
χ = ⎜ ⎟

⎝ ⎠
 and we 

measure Sx.  What are the probabilities that we find Sx = / 2+ =  and / 2− = ? 

 

Let's review the strangeness of Quantum Mechanics. 

Suppose an electron is in the Sx = / 2+ =  eigenstate (x) 1
2

1
1

⎛ ⎞
↑ = ⎜ ⎟

⎝ ⎠
.   If we ask: What is 

the value of Sx? Then there is a definite answer: / 2+ = .  But if we ask: What is the value 

of Sz , then this is no answer.  The system does not possess a value of Sz.  If we measure 

Sz, then the act of measurement will produce a definite result and will force the state of 

the system to collapse into an eigenstate of Sz, but that very act of measurement will 

destroy the definiteness of the value of Sx.  The system can be in an eigenstate of either 

Sx or Sz, but not both. 
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