SJP QM 3220 3D 1

Angular Momentum (warm-up for H-atom)

Classically, angular momentum defined as (for a 1-particle system)

L=rxp y m
royoz 7 p=my
=lx y z
pP. P, P. X
g 0

Note: L defined w.r.t. an origin of coords.

L=3%(yp.-zp,)+ 3 (zp, - xp.)+Z (xp, - yp.)

. A ho
(In QM, the operator corresponding to Lxis L, =y p.-Z p, , p. =——,etc.

z
according to prescription of Postulate 2, part 3.)

Classically, torque defined as 7 =#x F , and 7 = a (rotational version of ' =ma)

If the force is radial (central force), then T =7 x F =0=> L = const.

H-atom: A electron

F=-7 ; (Coulomb force)

—

proton at origin
In a multi-particle system, total average momentum:

L, = E I;. is conserved for system isolated from external torques.

¥—sum over particles

Internal torques can cause exchange of average momentum among particles, but
L, remains constant.

In classical and quantum mechanics, only 4 things are conserved:
" energy

* linear momentum
angular momentum
= electric charge
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Back to QM. Define vector operator L

operator unit vector

d<L >, d<L >,
X+ P o+...
dt dt

Claim: for a central force such as in H-atom

V=V(r)y=" ke’ s then E—A[,LA]: 0  (will show this later)

This implies 76 =0 (justlike in classical mechanics)

Angular momentum of electron is H-atom is constant, so long as it does not absorb
or emit photon. Throughout present discussion, we ignore interaction of H-atom
w/photons.

Will show that for H-atom or for any atom, molecule, solid - any collection of atoms
- the angular momentum is quantized in units of 4. | L| can only change by integer
number of A's.

Unitsof L = |_LJ= |_hJ
o[} D[

= LR bl

Claim: [ix ,iy ]= inL,

and A n (i, j, k cyclic:
[Ll.,Lj]=ith Xy Z or

y Z X Oor
Z Xy )

(since p = hk)
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To prove, need two very useful identities: Iﬁ; ?sz[gag]ﬁgf, CC ]23
) = Rl P

Proof: [Lx,Ly ]= [ypz —ZIP,sZP, — XD, ]=

[szasz]‘l_)’Pz’xPz ]_ [Zpy’sz]+ [Zpy’xpz:|=

y[pz’z:bx 0 0 xz’pz}y
— —
—ih +ih

all other terms
like [y, px] =0

= +ih(xpy —-yp,)=IihL,

(Have used [x,px ]= if, [x,y]= 0, [x, p, ]= 0, [px,py ]= 0, etc.

['m dropping the " over operators when no danger of confusion.

Since [Ly, Ly ] # 0, cannot have simultaneous eigenstates of Z_and iy.

However, I’ =L-L = I> + L’ + L} does commute with L.

Claim: |:L2,LZ ]= 0

&z’Li}O ,i=Xx,y,0orz
Proof: [LZ,LZ]=|;X2,LZ ]+ Eyz,Lz]+ IézL |
0

SN AV PR AN A TR P T A
ihL, il Vil L,

=0 (Note cancellations)

[L2, L,] = 0 => can have simultaneous eigenstates of 2,L_(or >, L, anyi)
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Looking forward to H-atom:

7 =22 (e ()-()
m

We will show that E—A[,iz ]= 0, E?,ﬁz ]: 0

=> simultaneous eigenstates of #', L, L.

energy q-nbr

When we solve the TISE 7 {y = E s for the H-atom, the natural coordinates to use
will be spherical coordinates: 1, 8, @ (notx,y, z)

zZ ’;A x=rsin0 cos @
f v y=rsin 0 sin @
0 0 Z =T Cos 0
y
0 e
X
, 9t 9t 9
Just rewriting V° = Py + P + Py in spherical coordinates is gawd-awful. But
X ) Z

separation of variables will give special solutions, energy eigenstates, of form
Y(r,0,9)=R(r)Y(0,9) = R(r) B(0) (¢)

The angular part of the solution Y (6, ¢) will turn out to be eigenstates of L2, L, and
will have form completely independent of the potential V().

*
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Given only [L2 L,] =0 and [?, iz hermitean we know there must exist

simultaneous eigenstates f (which will turn out to be the Y (6, ¢) mentioned above)
such that

Df=Af , Lf=uf
(A will be related to [, and p will be related to m)

We will show that fwill depend on quantum-numbers [, m, so we write it as f/™, and
that

" =nwl(l+1) 1"

* m m
L f" =hm-f,
wherel=0,%,l,%, o m=—l,=141, .. 1-1,1

f" =Y"(0,p) will be determined later.

Notice max eigenvalue of L, (= Ih ) is smaller than square root of eigenvalue of
L' =nyI{ +1

So,inQM, L,< |L| Odd!

Also notice I = 0, m = 0 state has zero angular momentum (L? = 0, L, = 0) so, unlike
Bohr model, can have electron in state that is "just sitting there" rather than
revolving about proton in H-atom.

Proof of boxed * formulae: (This proof takes 2 %> pages!)
Define L:= Lx + iLy = "raising operator”
L. = Ly - i Ly = "lowering operator"

(Note L.t =L., L.t =L:, Af=hermitean adjoint of A)

Neither L: or L. are hermitean (self-adjoint).

Note [2,2. ko | [, e,z ]+ i, Fo
0 0

=>Considerfi L’f=A-f , Lf=uf
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Claim: g = L. f is an eigenfunction of L, with eigenvalue = (u + h). So L. operator
raises eigenvalue of L; by 1 A.

Proof: L'g=L(L.f)=L(L’f)=AL f=Ag ¥

To prove L,g = (u + h) g, need to show that [L,, L+] = h L+«

[Lz’Lx+iLy:|= [Lz’Lx] + i[Lz’Ly] = h(l’x+iLy) v
inL, L, L

Now Lg= L(L,f) = LLf + hL.f = (u+h)Lf
——
7
L. L +hL, —(u+n)g v
So, operating on f with raising operator L. raises eigenvalues of Lz by 1A but keeps
eigenvalue of L? unchanged.

(Similarly, L- lowers eigenvalue of L; by 1A.)

Operating repeatedly with L. raises eigenvalue of L, by 4 each time: L. (L+ f ) has
(K + 2h) etc.

But eigenvalue of L, cannot increase without limit since <LZ> cannot exceed <L2>

() = () + (1) + (12) = 2>,

u? =0
2>y
There is only one way out. There must be for a given A a "top state" f; for which

L+ﬁ =0.
Likewise, there must be for a given A a "bottom state" f;, for which L. f, = 0.

Lz

A _— <+ fr )
L-
L+
L-
_— > all with same A =
+ L. eigenvalue of L2
h
- <+ J
fo
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Write L, f = mh-f , m changes by integers only
L.fi = £h-f: ,¢=maxvalue of m

L2 f =7 Want to write L? in terms of L+, L:

LL =L, —-iL)L,+il)=L,+L) + i|_Lx,Ly ]
-1>  ihL,
%/_/

-hL
=> [’ =LL + L +#hL,

(Also, I’ = L.L_+ L} — hL_)

=> I’'f =LLf + Lf + hL_f = w0/ +1)f
—_— —— ——
0 h22f, n2(f,

So, I’ f = h*/({+1)f where £ =max m, same A for all m's.
%/_/

A
Repeatfor f,: L_f, = n{f,, (= minvalueofm.

Lf, =LLf + L'f, + WL f, = B I({-1)f,
— = — —
0 n2if, —h20f, A

A=A = ((l+]) = ((L-1) = (=-/ (tryit])

SO Mpin = - Mmax and m changes only in units of 1.

=>m-=-¢,-¢+1, ...¢-2,¢-1, ¢

- /)
~—

N integer steps

=>2¢=N, £=N/2 => +¢£=0,12,1,3/2, 2,5/2,...

End of proof of *
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m
4 2 T T
1 1 -
0 0 o — EE—
-1 1 — -
2_ —

£
0 1 2 3

We'll see later that there are 2 flavors of angular momentum:

S

1. Orbital 2. Spin
Ang. Mom. Ang. Mom.
(integer ¢ only) (integer or ¥ integer OK)
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The H- atom
O Mme

mp >> me => /

proton (n(_early) < m, ~ 1840 me

stationary
Hamiltonian of electron = H = ;; +V(r)
m
2
L Ty S VR A e

TISE: f[wn =E wn => special solutions (stationary states).

—iE,t

Y (= (n)=yp (De
General Solution to TDSE:  W(x,7) = Ecne_lE%lpn(x)

Spherical Coordinate System:

Z P
@ Z=rcos 0
0 e ) X=rsin 0 cos @
y=rsin0 sin ¢
'\ -
0 e
Y=y (r,6¢)

; volume

Normalization: deW' |2 -1

ﬁ)mdr j:d@ jjﬂdqprzsinek//|2=1

Need V? in spherical coordinates

2 o’ f
Hard Way: V°f =V -Vf = p +...

2
X
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o _ofor of 90 of d¢ _
ox Jdrdx 060 dx d@ ox

—>-=—==—=—+... (nightmare!)

Also need 9 derivatives: ﬂ, or %
ox dJy 0x

Easier Way: Curvilinear coordinates (See Boas)

path element:
ds = xdx + ydy + Zdz

fdr + Ordé + §rsind dg

eh dx + e, h,dx, + e;h; dx,

3

2 éh, dx, (h; ="scale factor")

~ 1 of
Vf = ——
4 Z " h, ox,
vpo L [0 (mhoar), o (mhar),
hhh, | ox, \ h 0x ) ox,\ h, ox,

Spherical coordinates: J{;’Y’i= g’ o, Qﬂ}. 0}
=Y Ty ¥rSIN

$V2f=

2
izi rzi + 1 9 sinﬁi + 55— _12 8]2‘
r° or or ] r-sinf 06 00 ] rosin“ 0\ g

= (radial) + riz (angular)

*

In Classical Mechanics (CM), KE = p? /2m = KE =
(radial motion KE) + (angular, axial motion KE)

1
2
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Same splitting in QM:
h ’ 1 a gy 1 o

L’ =|=FxV| =-h’|——|s0— |+ 5 5
i s 00 00 ) s 0 dp

(Notice I? depends only on 6, ¢ and notr.)

A _ 2
Hy = 5 VY +V (i =E-y

m

-h*1 9,0y
el L
2m r° or or

iz
) + Y+ Viryy = Ey
2mr

Separation of Variables! (as usual)
Seek special solution of form:

Y (r,0,9) = R(r)-Y(0,9) = R(r)-0(0) D(¢)

Normalization: [dV | (|2 =

T

o 2
drr’|R]" - (dO [desind|Y]" =1
jo'rr|| { {qos1n||

1 1

(Convention: normalize radial, angular parts individually)

Plugy =R-Yinto TISE =>

I’)Y+V-R-Y=E-R-Y

-R*Y d( 2dR)
——|r +

2m r* dr E 2mr?
Multiply thru b —2mr2L
Py YW RY
2
LdfadR\ 2m g gyl o Ly
R dr dr ) 'Y

%f_/
f(r) g(0,9)

=> f{r)=g (0, @) = constantC = £(£ + 1)

Y = B*C-Y = R +1)Y (PageH-5)
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Have separated TISE into radial part f{ r) = #(€ + 1), involving V( r ), and angular
part g (6, @) = ¢(£ + 1) which is independent of V( r).

=> All problems with spherically symmetric potential (V = V(r)) have exactly same
angular part of solution: Y = Y(6, ¢) called "spherical harmonics".

We'll look at angular part later. Now, let's examine

2mr

hz
Radial SE: (x - -R)

—h*rR

)

-n* d , dR
2mr dr

r —) +7rRV-E) =
r

Change of variable: u (r) = r- R(r)

(j(:'dr|u|2 _ 1]

2
Can show that 1d rzﬁ _d z’ -
rdr dr dr
du dR d*u dR dR d*R
—=R+r—, - - +r

= — 4 —
dr dr dr’ dr dr dr’
same!
ld{ ,dR\ 1(. dR ,d’R dR  d’R

——|rr— | =—|2r—+r | =2—+r—
rdr dr r dr dr dr dr

2 2 B 2 h
U dzl + V+h—£(£jl) u==Fu
2m dr 2m r
Notice: identical to 1D TISE:
2 2
L di’f + V.y = Ey except
2m dr
r: 0 -> oo instead of x: - 00 -> + c0 and
h2
V(x) replaced with Vyir=V(r) + Py (L+1)
mr

Verr = "effective potential”

Boundary conditions:
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u (r=oc0) =0 from normalization [ dr|u|2=1

u(r=0) =0, otherwise R = “ blows up atr=0 (subtle!)
r

A A B

Vir)=-2,V, =-2+ 2
() , ef f r 2

Verr Notice that energy

eigenvalues given by
solution to radial
equation alone.

Seek bound
state
solutions E<0

E > 0 solutions are
unbound states,
"=1r scattering solutions

Full solution of radial SE is very messy, even though it is effectively a 1D problem
(different problem for each ¢ )

Power series solution (see text for details). Solutions depend on 2 quantum
numbers: n and ¢ (for each effective potential £ =0, 1, 2, ... have a set of solutions
labeled by index n.)

Solutions: n=1, 2, 3, ... for given n
‘€=O,1, (1’1-1) ‘Bmax=(n_1)

n = "principal quantum number"

energy eigenvalues depend on n only (it turns out)

2\2
£ E =-— mike’) (independent of )

n= 2 0 1 2h2

e same as Bohr model, agrees with experiment!
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First few solutions: Ry (1)

rormalization "Bohr radius”

= Vg A/Z Ame h’
R10=A108/’ ao=h4mez= 0462
R, = Azo(1 _L)e_ﬁaﬂ

a

R, = Azl(L)e_ﬁ%
ay
NOTE:
e for £ = 0 (s states), R (r=0) # 0 => wavefunction | "touches" nucleus.

efor£#0,R (r=0)=0 =>y does not touch nucleus.

£ # 0 => electron has angular momentum. Same as classical behavior, particle with
non-zero L cannot pass thru origin (L =7 x p:r=0= p = )

Can also see this in QM: for £ # 0, Verr has infinite barrier at origin = > u(r) must
decay to zero at r=0 exponentially.

Vst
d\ r = exponential decay in

\// R(r)= ur) as well.
,
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Back to angular equation: ]:ZY,'" =h*((+1)Y" Wantto solve for the ¥,"'s -
"spherical harmonics".  Before, started with commutation relations,

i.; b, [0 }o
and, using operator algebra, solved for the eigenvalues of L2, L,. We found

2ym _ 32 m
LY =it + 1y, where £ =0, %4, 1, 3/2, ...
LY" =mhY m=-¢,-£+1..+7¢

In the process, we defined raising and lowering operators:

P-f s«
£+Y[” =c, Y™ (form<m, = /)
Ly"=c, ¥ (form>m,, = ()

(cm is some constant)
i+ﬁop =LY/ =0and LY, " =0
So, if we can find (for a given £) a single eigenstate ¥,” , then we can generate all the

others (other m's) by repeated application of i+ or L .

Y =Y"(0,9).
It's easy to find the @-dependence; don't need the ii business yet.

iz = ﬁi (showed in HW)
10
f,ZY = EZ—Y =#AmY (and you can cancel the 7)
L op

Assume Y(0,p) =0(0) ®(p) =

D .
d—=z’m o = D (p)= e

de

If we assume (postulate) that s is single-valued than
O (p+2m) = D(p) = "7 =1

=>m=0,21,£2,... Butm=-4¢,..+¢

So for orbital angular momentum, £ must be integer only: £ =0, 1, 2, ... (throw out
%, integer values)
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*

(algebral)
_ il O . d
L =L +iL = he'’| —+icotd—
7 00 I
L =L —ilL, = he ~ 9 ticoto-L
g 00 I

L =1 adjoint (r|4'g) = (4f|2))

Can deduce Y" from L,Y, =0

{
4

Checks: Plug back in.
((sin6)'" cos§ 7 +icotO(sing)' (i)™ =0

(sind) %% _ cotsing) 0 = 0 v
sin 6

%/_/
cotd

Now, can get other ¥,"'s by repeated application of L .

2

Normalization from fdefd(p sin 6

m
Y,

0
Notice case #=0 |Yo =const= //411

.4 2

(since fdﬁfdzp sin@ =fd£2 =4m)
0 0

Example: 3
Y =-,|-—sin6e"”
k¥4
Y’ = 1/1 cos
4
Y = +1/i sin e
kY4

Convention on #* sign: Y, =(-1)" (Y/'")

+ icotd

Y,
I

=0

Yf(ea‘P) _ (Sill@)ﬁ ol Solution: (un-normalized)

Somewhat messy (HW!)
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The spherical harmonics form a complete, orthonormal set (since eigenfunctions of
hermitean operators)

[d2 (7YY = 6,08,

Any function of angles f= f (6, @) can be written as linear combo of ¥,"'s :

© +/(

f@p =3 3

/=l m=—/{

Likewise: ﬁ” drir*(R,) R, =0, 0,

=> H-atom energy eigenstates are
Y (120,9) = R, (DY"(O,0) = R0,
n=12,..;4=0,1 ... (n-1); m=-£...+7¢
Arbitrary (bound) state is
Y = an Cotm "W nim (c's are any complex constants)
energy of state (n, £, m) depends only on n.

En = - constant/n? (states £, m with same n are degenerate)

L=
0 1 2 3
n= 4 4 ) 4p  (3) 4d _ (5) 4f  (7)
3 3 ?p 3d
2 2 7p
1 .
1 Degeneracy of nth level is
nz
(2en? if you include spin)
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Radial Probability Density
deW -1

Prob (find particle in dV about » ) = fzp(?)rdV

If£ =0,y = y(r) then deW = fdr4nr2|zp(r)|2

Prob (findinr B r +dr) =|P(r)dr = 4,7'[}’2”(/}(]”)‘262’]/‘

P(r) = radial probability density
-7 Pr)
Ground state: y,,, = Ade "™

=2r
P(r)= | A| 4m’e Ve

Notice P(r) very different from y(r):

Yy

k

r

If2+0,y=y(r,6, ¢)=R(r) Y(6, @) then

, ‘2/— "solid angle"
favip| = [dri?* R [dQly| =1
e jadht

Prob (findinr B r+dr) =r? |R|? dr

P(I') =r2 IRlz eveniff#0

Note: zp=¢(r)=R-Y=R-L:|R|2=4n}¢|2 if

N4
so P(r)=r?|R[ =4m r*y|
H-atom and emission/absorption of radiation:
If H-atom is in excited state (n = 2, £ = 1, m = 0) then it is in energy eigenstate =

stationary state. If atom is isolated, then atom should remain in state 210 forever,
since stationary state has simple time dependence:

W(r,t) = l/’zlo(")'e_eEzt/h
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But, experimentally, we find that H-atom emits photon and de-excites: {210 -> Y100
in=107s->107s

o

2p
‘Awhﬂfb Ey =hf=AE
1s

The reason that the atom does not remain in stationary state is that it is not truly
isolated. The atom feels a fluctuating EM field due to "vacuum fluctuations".
Quantum Electrodynamics is a relativistic theory of the QM interaction of matter
and light. It predicts that the "vacuum" is not "empty" or "nothing" as previously
supposed, but is instead a seething foam of virtual photons and other particles.
These vacuum fluctuations interact with the electron in the H-atom and slightly alter
the potential V(r). So eigenstates of the coulomb potential are not eigenstates of the
actual potential:  Vcoulomb + Vvacuum

Photons possess an intrinsic angular momentum (spin) of 1 A, meaning

€=1=‘Z‘=h,/f(€+1)=ﬁh

andL, =h

So when an atom absorbs or emits a single photon, its angular momentum must
change by 1 A, by Conservation of Angular Momentum, so the orbital angular
momentum quantum number £ must change by 1.

"Selection Rule": A# =# 1 in any process involving emission or absorption of 1
photon => allowed transitions are:
S p d

n=1

If an H-atom is in state 2s (n = 2, £ = 0) then it cannot de-excite to ground state by
emission of a photon. (since this would violate the selection rule). It can only lose
its energy (de-excite) by collision with another atom or via a rare 2-photon process.
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Matrix Formulation of QM

complete orthonormal set

¢
¢,
w)=Yeln) o [w)={e}=|7
Cn
1 0
0 1
|”1>— 0 |”2>— 0
¢ 1 0
c, 1

If ket's are represented by column vectors, then bra's are represented by the

transpose conjugate of column = row, complex conjugate.
[w)=Yelu) = wl=Yelu,

wl=k ¢ ¢ ...)

G
(* . x c, 2 2 2
<I/J|1/}>= ¢ G, C5 ... = |c]| +|cz| +... = Ecn
C, -

Operators can be represented by matrices:

no hat on matrix element

R / . All AlZ
A-{4, 1= {m /in) }= 4, A,

where {| n >} is some complete orthonormal set.
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Why is that? Where does that matrix come from?

Consider the operator A and 2 state vectors |1/} >,

gy =Aly) ( *)

(p> related by

In basis {| n >},

[w)=Yeln)
%)= d,

I
g
I
=
£

n)

I
4
=
=
2

Now project equation 7 onto | m > by acting with bra:
(mlg) = (mldly) = Ye,(mlAln)

n
dll = EAWLVL Cn
n

But, this is simply the rule for multiplication of matrix X column.
d, A, A, R e

d, _ Ay Ay ¢,
d,

So there you have it, that's why the operator is defined as this matrix, in this basis!

Now, suppose A =7 and ﬂn) }are energy eigenstates, then

Hln) = Efn),  H,, =(mlH]n)=E,p,,
E, 0) /o 0
A2) = B)2)=| B (1) - £

E3

0

A matrix operator <m|;1|n> is diagonal when represented in the basis of its own

eigenstates, and the diagonal elements are the eigenvalues.

Notice that in general operators don't commute AB = BA. Same goes for Matrix
Multiplication: A B #1B A
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Claim: The matrix of a hermitian operator is equal to its transpose conjugate:

A hermitian < A =A

Proof:

(nfin) =)= o

*
= Amn = Anm

Am)

*

Similarly, adjoint (or "Hermitian conjugate") A A =4
Proof:
(Am|n) = (m|A'n) = s

Of course, it's difficult to do calculations if the matrices and columns are infinite
dimensional. But there are Hilbert subspaces that are finite dimensional. For
instance, in the H-atom, the full space of bound states is spanned by the full set {n, ¢,
m} (= | nfm>). The sub-set {n=2, =1, m = +1, 0, -1} forms a vector space called a

subspace.

Am)

Subspace? In ordinary Euclidean space, any plane is a subspace of the full volume.
If we consider just the Xy components of a vector Exy = XR, + JR, then we have a

perfectly valid 2D vector space, even though the "true" vector is 3D.

Likewise, in Hilbert space, we can restrict our attention to a subspace spanned by a
small number of basis states.

Example: H-atom subspace {n=2, ¥=1, m=+1, 0, -1}

Basis states are JL|m> }= |+1>,
fixed.)

0),

- 1> (can drop n=2, £=1 in label since they are

(L=1)
f,2|m> =m0+ 1)|m> = 2h2|m> (for all m)

+1 0 0
= (L) =(m|L|n)=n|0 0 0
0 0 -1
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Lzmn = <m|i2|n> =2h

S O =
oS = O

0
0
1

(What about Lx? Ly?)

Before seeing what all this matrix stuff is good for, let's examine spin because it's
very important physically and because it will lead to 2D Hilbert space with simple 2

X 2 matrices.

Review of Dirac Bra - Ket Notation

bracket or inner-product:
(flg)= fdxf*(x)g(x) or def*(F)g(F) or dQ (0,q) ...
Which integral you do depends on the configuration space of problem.
Key defining properties of bracket:
» <f|g>=<g|f> c = constant
V'
» <flceg> =c<f|g>, <cef| g> =c"<f|g>
« <a|(b|B>+cly>) =b<a|B>+ c<a|y>

Dirac proclaims: <g|f> = <g| nextto | f>
bracket = "bra" and "ket"

Ket | f> represents vector in H-space (Hilbert Space)

"wavefunction”

“ket"
|1/ﬁi/s to y(x)as Ris to (Rx,Ry,Rz )

Both {r and s(x) describe same state, but | { > is more general:

KEx =0(x-x) \

Y(xy) = <x0|w>
1 Different
S, = —e" "representations”

; \/_ > of same

(p) = (plw) H=space vector
I'E

(} n = Enun

b= 6w)
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position-representation, momentum-rep, energy-rep.
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What is a "bra"? < g|is a new kind of mathematical object, called a "functional"”.

(g] _ = fdxg'() _

anert state function here

input output
function: number number
operator: function function
functional:  function numbe

< g | wants to bind with | f > to produce inner product< g | f >

For every ket | f > there is a corresponding bra < f |. Like the kets, the bra's form a
vector space.

» |cf> B <cf| =c"<f]

)
" |af+Bg> B <af+fg| = o <f|+ f<g|
» <af+Bg|lh> = a'<f|h> + B'<g|h> Vv

Complex number X bra = another bra => bra's form
any linear combo of bra's = another bra vector space

The vector space of bras is called a "dual space”. It's the dual of the ket vector space.

;1| f> = ‘2f> is a ket. What is the corresponding bra? ‘}if> — <;1f‘ = <f|A"‘_ Def'n of Af

Definition: hermitean conjugate or adjoint A' of operator A (;1T ="A -dagger")
<Af‘g> = <f‘ATg> forall £ g.

(If A= A', then Ais hermitean or self-adjoint.)
Some properties:

- (B)-p'4
- (@)-4
proof : (|(4") ¢)=(As]s) -

/<g\f‘*f>* - (Agls) = (7|r)
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The adjoint of an operator is analogous to complex conjugate of a complex number:
=, A" = 4

¢ =c=>creal, A' = A= A hermitean.

The "ket-bra" | f > < g | is an operator. It turns a ket (function) into another ket
(function):

(1)l ) [r)=]r) (eln)

Projection Operators

H u,(x) = E,u, (x) = H|n) = E,

Y(x) = Y c,u,(x)= Y (u,
[w)=Ye.ln)= Y (nlw) |n>=2|n> (nw)

n n

)

¥) u,(x) =

E|n><n| -1! => "C_ompleteness relation”
" B} (discrete spectrum case)

13,, = |n><n| = "projection operator”

f’n picks out portion of vector | { > that lies along | n >

n)

B, [w)=|n) (n|y)=c,

n

uz =|2>

[2> <2[P> Y

u; =|1>

ui<uz|P> = |1> <1|y>
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E| nly) like R = x( -K’) + f}(ffﬁ’)

1=N|n)n| like 1=3(x_) + 5(5- _)

Anywhere there is a vertical bar in the bracket, or a ket or a bra, we can replace the
bar with 1= E|n><n

)=1
> Slnfly)-1= Jeie, -

If eigenvalue spectrum is continuous (as for x or p ) then must use integral, rather

Example: <

2

n

than sum, over states.

fdx |x><x| -1 | Completeness Relation
(continuous spectrum)

Example: ®(p)= <f,, ‘w> = fdx<f,, ‘x><x|w> - ;Efdx e Py x)

The Measurement Postulates 3 and 4 can be restated in terms of the projection
operator:

Starting with state |1/} E

)= 2l

where sum {n} is over any complete set of states, if we measure observable
associated with n, then we will find value no with probability

e = W) lw)=w

P(ny) = (B, ) = (w

A
E

P(ny) =

W)

P

ny

W)

Probability of finding eigenvalue n0 = expectation value of projection operator 13,,0 .

).

(apart from normalization)

And as result of measurement state | > collapses to state}n()} =P
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We can now generalize to case of states described by more than one eigenvalue,
such as H-atom.

Y = zcnémq}nfm — |1/}> = Z|n£m><n£m|1/}>

If we measure energy (but not also |L

, L_), find no, then we are projecting onto

subspace spanned by {#, m } with some no.
1’3,10 = Z|n0€m><n0£m|
V)= Z

State collapses to 13"0 |1,U> = 2|n0€m><n0€m|zp>

must renormalizf

0(=0,1...(n,-1)

? m=—0 ... +/

P(ny) =<1/J 13}’10

c

nylm
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Spin 4

Recall that in the H-atom solution, we showed that the fact that the wavefunction
WY(r) is single-valued requires that the angular momentum quantum # be integer: / =
0,1, 2.. However, operator algebra allowed solutions/=0,1/2, 1, 3/2, 2...
Experiment shows that the electron possesses an intrinsic angular momentum
called spin with /= %. By convention, we use the letter s instead of /for the spin
angular momentum quantum number : s = %.

The existence of spin is not derivable from non-relativistic QM. It is not a form of

orbital angular momentum; it cannot be derived from L=7x p.

(The electron is a point particle with radius r = 0.)

Electrons, protons, neutrons, and quarks all possess spin s = %. Electrons and
quarks are elementary point particles (as far as we can tell) and have no internal
structure. However, protons and neutrons are made of 3 quarks each. The 3 half-
spins of the quarks add to produce a total spin of %2 for the composite particle (in a
sense, 11| makes a single ). Photons have spin 1, mesons have spin 0, the delta-
particle has spin 3/2. The graviton has spin 2. (Gravitons have not been detected

experimentally, so this last statement is a theoretical prediction.)
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Spin and Magnetic Moment
We can detect and measure spin experimentally because the spin of a
charged particle is always associated with a magnetic moment.

Classically, a magnetic moment is defined as a vector p associated with
aloop of current. The direction of u is perpendicular to the plane of
i

the current loop (right-hand-rule), and the magnitude is

m, q
w=iA =imr’.
The connection between orbital angular momentum (not spin) and magnetic
moment can be seen in the following classical model: Consider a particle with mass

m, charge q in circular orbit of radius r, speed v, period T.

T T 2nr 2xy 2
| angular momentum |=L=pr = mvr, so vr=L/m, and u = % = 2i .
m

So for a classical system, the magnetic moment is proportional to the orbital

angular momentum: | u = %E (orbital)
m

The same relation holds in a quantum system.

In a magnetic field B, the energy of a magnetic moment is given by
E=-iB = —-u, B (assuming B=Bz). InQM, L, =%Zm.

Writing electron mass as me (to avoid confusion with the magnetic quantum number

m)and q = -e we have u, = —;—hm, where m = - /.. +/ The quantity
m

€
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is called the Bohr magneton. The possible energies of the magnetic

2m

€

moment in B = BZ is given by E,=-uB=-u,Bm.

For spin angular momentum, it is found experimentally that the associated magnetic

moment is twice as big as for the orbital case: | u = 4.3 (spin)
m

(We use S instead of L when referring to spin angular momentum.)

This can be written @, = ——— m = -2y, m.
m

€

The energy of a spininafieldis E_, = -2u, Bm (m =+1/2) a fact which has been

spin
verified experimentally.

The existence of spin (s = ¥2) and the strange factor of 2 in the gyromagnetic ratio
(ratio of {i to S) was first deduced from spectrographic evidence by Goudsmit and

Uhlenbeck in 1925.

Another, even more direct way to experimentally determine spin is with a Stern-

Gerlach device, next page
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(This page from QM notes of Prof. Roger Tobin, Physics Dept, Tufts U.)

Stern-Gerlach Experiment (W. Gerlach & O. Stern, Z. Physik 9, 349-252 (1922).

. = = = ) ~ . B
F= V(g . B) = (u* V)B (in current free regions), or here, F' = z(u, &é) z
Z

) (thisis alittle

crude - see Griffiths Example 4.4 for a better treatment, but this gives the main idea)
Deflection of atoms in z-direction is proportional to z-component of magnetic
moment uz;, which in turn is proportional to L,. The fact that there are two beams is
proof that /=s = %. The two beams correspondtom =+1/2and m =-1/2. If/=1,
then there would be three beams, corresponding to m = -1, 0, 1. The separation of

the beams is a direct measure of u;, which provides proofthat u, = -2y, m

The extra factor of 2 in the expression for the magnetic moment of the electron is
often called the "g-factor" and the magnetic moment is often written as

u, = —gu,m. As mentioned before, this cannot be deduced from non-relativistic

QM; it is known from experiment and is inserted "by hand" into the theory.
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However, a relativistic version of QM due to Dirac (1928, the "Dirac Equation")
predicts the existence of spin (s = %2) and furthermore the theory predicts the value
g = 2. Alater, better version of relativistic QM, called Quantum Electrodynamics
(QED) predicts that g is a little larger than 2. The g-factor has been carefully
measured with fantastic precision and the latest experiments give g =
2.0023193043718(=76 in the last two places). Computing g in QED requires
computation of ab infinite series of terms that involve progressively more messy
integrals, that can only be solved with approximate numerical methods. The
computed value of g is not known quite as precisely as experiment, nevertheless the
agreement is good to about 12 places. QED is one of our most well-verified

theories.

Spin Math
Recall that the angular momentum commutation relations
[LL,1=0, [L,L]=ikL, (ijkecyclic)

were derived from the definition of the orbital angular momentum operator:

L=r1xp.

The spin operator S does not exist in Euclidean space (it doesn't have a position or
momentum vector associated with it), so we cannot derive its commutation
relations in a similar way. Instead we boldly postulate that the same commutation
relations hold for spin angular momentum:

[S%,S,1=0, [S;,S;]=1AS,. From these, we derive, just a before, that
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S’|sm,) = *s(s+1)|sm,) = %h2|sms> (sinces=1%)

S

z

sms> = hm, sms> = i%h|sms> (sincems=-s,+s =-1/2,+1/2)

Notation: since s = % always, we can drop this quantum number, and specify the

eigenstates of L2, L, by giving only the ms quantum number. There are various ways

1 1
[+3).]-3)

to write this: [sm) = |[m;) = [+),]-)
1) 14)

These states exist in a 2D subset of the full Hilbert Space called spin space. Since

these two states are eigenstates of a hermitian operator, they form a complete

orthonormal set (within their part of Hilbert space) and any, arbitrary state in spin

space can always be written as |x> = a‘ ’[‘> + b‘ \|,> = (E) (Griffiths' notation is

x=ay, +by_ )

Matrix notation: |1) = ((1)) 4 = (‘1)) Note that (1[1) = (4[4} = 1, (1[4} =0

If we were working in the full Hilbert Space of, say, the H-atom problem, then our

basis states would be |n {m, ms> . Spin is another degree of freedom, so that the

full specification of a basis state requires 4 quantum numbers. (More on the

connection between spin and space parts of the state later.)

[Note on language: throughout this section [ will use the symbol S, (and Sk, etc) to
refer to both the observable ("the measured value of S;is +#/2") and its associated

operator ("the eigenvalue of S, is +7/2").]
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The matrix form of S2 and S; in the ‘m(z)> basis can be worked out element by

element. (Recall that for any operator A, A__ = <m|A|n> )

S

z

S

z

ity =20, (fefs) =0, o 1

¢ _3p(l 0y (1. (10
4" (o 1 * 270 -1

Operator equations can be written in matrix form, for instance,

TR N e HRRE

We are going ask what happens when we make measurements of S, as well as Sk

1
ty=+n (1

J,> =0, etc.

S

z

and Sy, (using a Stern-Gerlach apparatus). Will need to know: What are the
matrices for the operators Sx and Sy ? These are derived from the raising and
lowering operators:

S, =S, +iS, S, =14(S, +S.)
S. =S, -iS, S, =+(S, -S.)

To get the matrix forms of S:, S_, we need a result from the homework:

S

+

S

hiyJ s(s+1)—m(m +1)
h\/s(s+1)—m(m—1)

s,m,)

s, m, +1)

s,ms>

s, m, — 1>

For the case s = 1, the square root factors are always 1 or 0. For instance, s =5,
m=-1/2 gives s(s+1)-m(m+1) = %(%)— (—%)(%) = 1. Consequently,

S,

(1
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0 1 0 0
S, = h(o 0) S = h(l O) Notice that S., S_are not hermitian.

Using S, = 4(S, +S_) and S, = (S, - S_) yields

0 1 0 -i
S, = g(l 0) S. = E( ) 1) These are hermitian, of course.

. =  h. 0 1 0 1 1 0
Often written: S = —6 ,where o = , O, =] . , O, = are
2 1 0 Y 0 -1

called the Pauli spin matrices.
Now let's make some measurements on the state [y) = a| 1) + b||) = (z) .
Normalization: (x|x)=1 = [af +[o] = I.

Suppose we measure S; on a system in some state |y = (Z) :

Postulate 2 says that the possible results of this measurement are one of the S,

eigenvalues: +#/2 or —%/2.Postulate 3 says the probability of finding, say -7/2,

is Prob(find ~1/2) = [(|%)[ =

o 0f3) -1

Postulate 4 says that, as a result of this measurement, which found -7/2, the initial

state |x> collapses to ‘J,> .

But suppose we measure Sx ? (Which we can do by rotating the SG apparatus.)
What will we find? Answer: one of the eigenvalues of Sy, which we show below are

the same as the eigenvalues of S;: +#/2 or —7/2. (Not surprising, since there is
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nothing special about the z-axis.) What is the probability that we find, say, Sx =

+nh/27?7 To answer this we need to know the eigenstates of the Sx operator. Let's
call these (so far unknown) eigenstates "[‘(”> and ‘ J,(")> (Griffiths calls them

(x)

+

‘x > and ‘X(,X)> ). How do we find these? We must solve the eigenvalue equation:

S

X

0 h/2\[/a a _ _ -A h/2\(a
= A which can be rewritten = 0.In
/2 0 )b b /2 =AM Jlb

X> = 7¥|X> , where A are the unknown eigenvalues. In matrix form this is,

linear algebra, this last equation is called the characteristic equation.

This system of linear equations only has a solution if

N n/2 A h/2
Det - = 0. SoM-(h/2) =0 = A==zh/2
ni2 -\ n2 -n

As expected, the eigenvalues of Sy are the same as those of S, (or Sy).

Now we can plug in each eigenvalue and solve for the eigenstates:

R R HH R AR

So we have "l‘(x)> = %(1) and ‘¢(X)> = %(_11)

1
Now back to our question: Suppose the system in the state ‘ ’[‘(Z)> = (0) ,and we

measure Sx. What is the probability that we find, say, Sx= +#%/27 Postulate 3 gives
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the recipe for the answer:

2
2

Prob(find S, = +4/2) = ‘( 10| 4@ >‘ -

- Mz ~1/2

1
a
Question for the student: Suppose the initial state is an arbitrary state |x> = (b)

and we measure Sy. What are the probabilities that we find Sx= +#/2 and -#/27?
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Let's review the strangeness of Quantum Mechanics.

1
Suppose an electron is in the Sx = +7/2 eigenstate ‘ ’l‘(x)> = %(1) . If we ask: What

is the value of Sx? Then there is a definite answer: +7/2. Butif we ask: What is the

value of S;, then this is no answer. The system does not possess a value of S,. If we
measure S;, then the act of measurement will produce a definite result and will force
the state of the system to collapse into an eigenstate of S, but that very act of
measurement will destroy the definiteness of the value of Sx. The system can be in

an eigenstate of either Sy or Sz, but not both.
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