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The Formalism of Quantum Mechanics: 
 
Our story so far … 
 State of physical system:  normalizable Ψ( x, t ) 
 

 Observables:  operators  
      

€ 

ˆ x  ,  ˆ p = 
i
∂
∂x

 ,  ˆ H  

 
 

 Dynamics of Ψ:  TDSE 
    

€ 

i ∂Ψ
∂t

=  ˆ H Ψ  

 
 To solve, 1st solve TISE:   

€ 

ˆ H ψ = Eψ  
  

Solutions are stationary states ψn(x), En ═►special solutions of TDSE: 
  

€ 

Ψn (x, t) =ψn (x)e
− iEn t   

 
 TDSE linear ═►any linear combo. of solutions is also a solution. 
 
Discrete case: 

  

€ 

Ψ(x, t) = cne
−iEnt / ψn (x)

n
∑   (n =1,2,3,)  

 

Continuum case:         

      

€ 

Ψ(x, t) = dk φ(k)e− iω(k )t∫ ψk(x)   

(k any real number)       e+ ikx / 2π
 

 
 
 
 
  
 
 
 
 
 
 
 
ψn's ,  ψk's  form complete, orthonormal sets: 
 

€ 

dx∫  ψm
*ψn = δmn

dx∫  ψk '
*ψk =

1
2π

dx ∫ ei(k−k' )x = δ(k − k')
 

 

Discrete Discrete Continuum Discrete + 
Continuum 
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Notice similarity of Ψ 's  to vectors; 
 
 Vector    

€ 

 
V     //                   complex function Ψ( x, t ) 

 
 Scalar  real number a         //                  complex number c 
 
 Any linear combination of vectors is a vector 
    

€ 

 
C = a

 
A + b

 
B   //  

€ 

Ψ =αΨ1 + βΨ2 
                              

 Orthonormal basis vectors   
  

€ 

ˆ x ⋅ ˆ x =1  ,   ˆ x ⋅ ˆ y = 0   //  

€ 

 ψm
*ψn  dx∫ = δmn  

 

  

€ 

 
V = Vx ˆ x + Vy ˆ y + Vz ˆ z    //  

€ 

Ψ = cnψn
n
∑  

 

  

€ 

Vx = ˆ x ⋅
 
V      //  

€ 

cn =  dx ψn
*Ψ∫  

 
 Inner product 

  

€ 

 
A ⋅
 
B = AiBi

i= x,y,z
∑

   //    

  

€ 

∫ dx Ψ*Φ =

dx∫ dmψm
m
∑
 

 
 

 

 
 

*

cnψn
n
∑
 

 
 

 

 
 

= dm
*

m.n
∑ cn  ψm

*ψndx∫
δmn

     
 = dn

*

n
∑ cn

 

The space of all complex, square-integrable functions Ψ(x) is called  Hilbert Space. 
  
 Norm   

  

€ 

 
V ⋅
 
V =

 
V 

2
  //  

€ 

 Ψ*Ψ dx∫ <∞   
 

Hilbert Space is an infinite-dimensional vector space with complex scalars and 
normalizable vectors. 
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Postulate  1:   Every possible physical state of a system corresponds to a normed vector 
in Hilbert Space.  The correspondence is 1-to-1 except that vectors that differ by a phase 
factor (scalar of modulus 1) corresponds to the same state Ψ( x, t ) ◄═► eiθ Ψ( x, t ) 

 
Dirac Notation: 
     

  

€ 

dx
−∞

+∞

∫ f *(x) g(x) = f g =  complex number  

 

=>         
  

€ 

f g =  g f *

f f  is real,  non - negative
 

 
 

c any complex number:            
  

€ 

f c ⋅ g =  c f g

c ⋅ f g  =  c* f g
 

 
 
Postulate  2:   (to be stated shortly!)  associates with every observable a linear, 
hermitean operator. But first, a little background: 
 
Definition:  An operator 

€ 

ˆ Q  is hermitean (or hermitian, both spellings are common) if   

  

€ 

f ˆ Q g = ˆ Q f g  for all f,  g in Hilbert space (H - space).  

Which can be written (in position representation) as 

€ 

dx∫ f *( ˆ Q g) = dx∫ ( ˆ Q f )* g  
 

Question: Is the operator 

€ 

ˆ Q = d
dx

(  )  Hermitian?  (The answer will be no.) 

Let’s see why!  

    

€ 

dx∫ f * dg
dx

parts
     

?
 =  dx∫ df

dx
 

 
 

 

 
 

*

⋅ g

f *(x)g(x) |−∞+∞

0
       

−
d
dx∫ ( f *) ⋅ g(x) dx = −

df
dx
 

 
 

 

 
 ∫

*

⋅ g(x) dx

 

 
So the answer is NO, there’s an extra unwanted minus sign that cropped up. It is NOT the 
case that for this particular operator, that 

€ 

f ˆ Q g = ˆ Q f g .   Instead, we found here 

€ 

f ˆ Q g = − ˆ Q f g  and that means Q is NOT hermitian. 
 
By the way, the “surface turm” in our integration by parts gave me zero because f and g 
belong to Hilbert space, and thus should vanish off at infinity (so they’re normalizable!)
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Question: Is the operator 
  

€ 

ˆ Q = 
i
∂
∂x

(  ) hermitian? Answer is Yes! Let’s see why:  

  

€ 

f * 

i∫ ∂g
∂x

dx =
int. by parts

  − 

i∫
∂
∂x

( f *) ⋅ g = +


i
df
dx

 

 
 

 

 
 

*

g ∫ dx

     

=>   f ˆ Q g = ˆ Q f g

 

 
 
Question: Is the operator 

€ 

ˆ Q = c ⋅ (  )  hermitian (if c is some constant?) 

    

€ 

f c ⋅ g =
?

c ⋅ f g

  c f g =
?

c* f g ⇒  

   

It depends! This operator is hermitian only if c is real. 
 
 
Why are hermitean operators special?  Why only hermitean operators associated with 
physical observables?  Because hermitean operators produce real eigenvalues (and 
measurements of observables always produce real values). 
   
  Eigenvalue equation:   

€ 

 ˆ Q  f (x) = q ⋅ f (x )    
 
                                   eigenfunction              eigenvalue 
 
Theorem :  The eigenvalues of a hermitean operator 

€ 

ˆ Q  are real. 
 
Proof:  Assume f(x) is an eigenfunction:   

€ 

 ˆ Q  f = q f    
                                

    

€ 

Q ≡ f ˆ Q f
   

   =    ˆ Q f f
   

 where ˆ Q  is hermitean

       q f f     =    q ⋅ f f   =   q* f f
 

 

  

€ 

⇒ (q − q*) f f = 0⇒ q = q* (since f f ≠ 0)  
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Theorem :  The eigenfunctions of a hermitean operator with distinct (different) 
eigenvalues are orthogonal. 
 
Proof:  Given          

€ 

 ˆ Q  f (x) = q ⋅ f (x )  ,   ˆ Q  g(x) = q'⋅g(x )   (with  q ≠ q')  
      

    

€ 

 f ˆ Q g
   

   =    ˆ Q f g
   

   (since ˆ Q  hermitean)

  q' f g    =    q* f g    =    q f g    (q real)

⇒ (q'−q) f g = 0⇒ f g = 0  since (q' -q)  ≠  0 by assumption.

 

 
Postulate  2:   (Operators + Observables) This is a long postulate with 3 parts, and 
many texts break this up into 2 or 3 postulates. 
 

1) For every physical observable Q (x, p, E, etc.) there corresponds a linear 
hermitean operator 

€ 

ˆ Q  in the Hilbert Space which possesses a complete, 
orthonormal set of eigenfunctions fn (x) and the corresponding eigenvalues qn 
 

  

€ 

 ˆ Q  fn (x) = qn ⋅ fn (x )  (n could be discrete or continuous) 
 
 

2) The only possible results of a measurement of Q are one of the eigenvalues        
qn={q1, q2, q3, …} 

 

3) The momentum operator is 
  

€ 

ˆ p = 
i
∂
∂x

( )      

            The position operator is 

€ 

ˆ x = x ⋅ ( )    
 
           Any function Q( x, p ) has operator   

€ 

 ˆ Q = Q( ˆ x , ˆ p )  
 
An example of  

€ 

 ˆ Q = Q( ˆ x , ˆ p )   is the energy operator (or Hamiltonian), 

    

€ 

ˆ H =
ˆ p 2

2m
+ V ( ˆ x ) = −


2

2m
∂2

∂x 2 ( ) + V (x) ⋅ ( ) 

 
Solutions of   

€ 

ˆ H ψn = Enψn  form an orthonormal set (since   

€ 

ˆ H  is hermitian!)  
 
That ψn's form a complete set can be proven in some special cases like the infinite square 
well or S.H.O., but in general, completeness is taken as a postulate. 
 
If energy is measured, the only possible result is one of the En's. 
 
                                                                     * 
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The momentum eigenstates are solutions of:    
    

€ 

ˆ p  f p (x) = p ⋅ f p (x),  where ˆ p = 
i
∂
∂x

    . 

  
Eigenfunctions:   

€ 

f p (x) = Aeikx    (any constant A) 
 
Eigenvalues:     

€ 

p = k   (k any real number) 
 

Proof: 
    

€ 



i
d
dx
(Aeikx ) = k(Aeikx ) .    (That’s it!)  

 
In this case, the eigenvalues of p form a continuum (any real value of   

€ 

p = k  is 
permitted) and this leads to some mathematical subtleties. 
 
Are the fp's orthonormal?  (Ans:  kind of … yes) 
 
 

€ 

f p ' (x) ⋅ f p (x) dx = δ(p − p')∫  
     "Delta function orthogonality" 
 

    

€ 

f p (x) = Aeipx /        ( p = k,  any real k (+) or ( -  ) ) 
 
Adjust A so that  <fp' | fp > = δ ( p – p' )  
 

    

€ 

f p' f p     =        A 2 dx ∫ ei( p− p' ) 

2πδ p− p '


 

 
 

 

 
 

using δ c⋅x( )= 1
c
δ (x )→2πδ (p− p ' )

     

       
    =      A 22π

want this to be =1

⇒   A=
1
2π

         

   
δ(p − p')

                               

 

Thus, 
  

€ 

f p (x) =
1
2π

e+ip ⋅x               for any real p, ( + ) or ( - ) 

 
Question: are the fp's a complete set? 
 
Fourier Analysis (Planchevel's Theorem) says that any f(x) can be written 

  

€ 

f (x) =
1
2π

dk F(k) e+ ikx    ,  where∫

F(k) =
1
2π

dx∫  f (x) e−ikx
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Now, any Ψ ( x, t ) is a function of x (at arbitrary t), and thus (from the previous page) 

  

€ 

Ψ(x, t) =
1
2π

dk Φk (k, t) e
+ ikx    ,  where∫

Φk (k, t) =
1
2π

dx∫  Ψ(x,t) e−ikx
 

 
A quick change of variables,   

€ 

k→ p = k,  dk = dp /,  leads us to define 

    

€ 

Φ(p,t) =
Φk (k,t)


  (where p = k)  

 
Putting it all together: 

    

€ 

Ψ(x, t) =
1
2π

dp Φ(p,t) eipx / ∫

Φk (p,t) =
1
2π

dx∫  Ψ(x, t) e− ipx / 

Ψ(x, t) = dp Φ(p,t) f p (x)   ⇒  f p  is are complete∫

 

 
Note!  Previously we wrote similar relations when Ψ (x, t) was a free particle state  
(V= 0).  But any function Ψ (x, t) can be Fourier analyzed.  In the special case of free 
particle, then     

    

€ 

Φk (k, t) = φ(k)e−iωt   ,  where ω =
k 2

2m
 

 
but this particular (simple) time-dependence in Φ(k, t) is true only for the special case of 
a free particle. 
 
Φ(p, t) is called the momentum-space wave function.  It is the Fourier transform of Ψ(x,t)  
 
and tells "how much   

€ 

p = k = h λ " is in Ψ.  Φ(p, t) contains all the same info as Ψ(x,t). 
 
     * 
 

No subscript 
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We’re ready now to re-state Postulate 3.  Previously, Postulate 3 was stated as  
 
 Prob ( find position in x → x + dx) = | Ψ |2 dx. 
 
Our re-statement will look very different, but will be same. 
 
Postulate  3 :  If a system is in state Ψ(x,t), and a measurement of observable Q is made  
 
on the system, where the corresponding operator 

€ 

ˆ Q  has eigenfunctions fn(x) and 
eigenvalues qn: 

€ 

ˆ Q  fn (x) = qn fn (x) ,  then  the strongest predictive statement that can be made about the 
result of that measurement is:    
 Prob ( measure qn )      =      | < fn  | Ψ > |2      (discrete spectrum) 
 
If spectrum is continuous, 

€ 

ˆ Q  fq (x) = q fq (x)  (with any real value of q) then 
 
 Prob ( measure qn → q + dq )      =      | < fq  | Ψ > |2  dq 
 
 
     *     
 
Example of Postulate 3: 
Suppose a system has discrete energy eigenvalues: 
    

€ 

ˆ H ψn = Enψn       (n =1,  2,  3,  ...) 
 
and your system is in a state that is a linear combo 
 

    

€ 

Ψ(x, t) = cn (t)
n
∑  ψn (x) = cn ⋅ e

− iEnt


n
∑ ψn (x)

(cn (t) = cn ⋅ e
−iEnt    where cn = dx ∫ ψn

*Ψ ),
 

 
then a measurement of energy will yield value En with probability = 
   
 | < ψn  | Ψ > |2  =  | cn |2   
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If the system is already in a particular (single, pure) eigenstate n0: 
 

    

€ 

Ψ(x, t) =ψn0
(x) e

− iEnt
 ⇒

Ψ(x, t) = cn
n
∑  e

−iEnt
  ψn (x) where cn0

=1 and all other cn 's = 0
 

 
 
then measurement of energy will yield En0 with probability 

€ 

| cn0 |
2=1 

 
This means an eigenstate of energy is state of definite energy.  (Look back, think about it, 
convince yourself! The formalism can look opaque, but if you have an eigenstate of H, 
there is only ONE TERM in our expansion, and there is thus only one possible result 
when you measure energy) 
 
A similar argument applies to any observable:  an eigenstate of 

€ 

ˆ Q  is a state of definite Q 
(and the value of Q = the eigenvalue of the eigenstate) 
 
 
 
     *     
 
 
Previously, we asserted that the expectation value of Q =  

€ 

ˆ Q = dx∫ Ψ* ˆ Q Ψ = Ψ ˆ Q Ψ .   (We’ve used this, in the “integral form”, many times!)  
 
We can now show this follows from Postulate3: 
 

  

€ 

Ψ ˆ Q Ψ =
Hermiticity

ˆ Q Ψ Ψ            =
completeness

          ˆ Q cn
n
∑ fn Ψ

=
ˆ Q  fn = qn  fn

   cn
n
∑ qn fn Ψ             =

q n
* = qn

           cn
*

n
∑ qn fn Ψ

cn

   

 

 
 

  

€ 

= qn | cn
n
∑ |2    =    qn ⋅  Prob (qn )

n
∑  

 
= weighted average of qn's.   
( This is what you would mean by “the expectation value” of measurements of Q. ) 
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Eigenstates of   

€ 

ˆ H  = states of definite energy 
 
Eigenstates of   

€ 

ˆ p      = states of definite momentum 
 
Eigenstates of   

€ 

ˆ x    = states of definite position 
 
Let’s look at these position eigenstates 

€ 

gx0 (x)  
           

€ 

ˆ x gx0
(x) = x0gx0

(x)  
 
 
variable x                  particular x = x0 
 

€ 

ˆ x = x ⋅ ( )⇒ x ⋅ g(x) = x0g(x)⇒ (x − x0)g(x) = 0  
 
═> g(x) is zero everywhere, except at x = x0 

€ 

⇒ gx0
(x) = δ (x − x0)  

 
Postulate 3 says Prob ( x0 → x0 + dx) =  | <x0 | Ψ (x,t) >|2 dx 
 
                               

€ 

= dx ∫ δ(x − x0)Ψ(x, t)
2
dx = Ψ(x0,t)

2dx  
 
(agrees with our previous version of Postulate 3, what we’ve been using all along). 
 
Postulate  4 :  (Wave function collapse) 
If a measurement of observable Q gives result qn, then the wavefunction instantly 
collapses into the corresponding eigenfunction of Q, fn (x). 
 
Discrete spectrum example:   
 

  

€ 

Ψ(x, t) = cn (t)
n
∑  ψn (x) = cn ⋅ e

− iEnt 

n
∑ ψn (x)    (where 

€ 

ψn (x)  is an eigenstate of   

€ 

ˆ H  

 

    

€ 

If measure energy,  and if find E = En0
⇒

          Ψ  →
collapse
   ψn (x)           ,  and the new Ψ(x, t) =  e−iEn0 t ψn0

(x) 

Ψ 

x0 

x 

Must be delta  
function 

Notation:  gx0(x)  
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Continuous spectrum example:   
 

  

€ 

Ψ(x, t) = dp∫  Φ(p,t) eipx 

2π
             f p (x ), 
momentum e-states

   

   =    dp∫  Φ(p,t) f p (x) 

 
|Φ(p0)|^2 is the probability density, telling you the probability if you measure momentum, 
that you will get p within p0 →  p0 + Δp. 
No measurement of continuous variable has infinite precision.  Precision Δp depends on 
measurement.  This means that  in practice, collapse is to a normalizable Ψ that is almost 
an eigenstate 

€ 

f p0 (x)  
 
 
 
 
After collapse: 
 
 

 
 
  

 
 
 
 

(uncertainty principle) 
 
 
 

 
 
 
 

        * 
 

p 

Δp 

p0 

Φ(p,t) 
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Function  
  Space 
 
 
 
 
 
 
 
 
 
 
 
To make our list of postulates complete: 
 
Postulate  4 :  (Schrödinger Equation): The time evolution of the wavefunction Ψ(x,t) is 
determined by the TDSE:           
 

 

    

€ 

ˆ H  Ψ = i ∂Ψ
∂t

ˆ H =
ˆ p 2

2m
+ V( ˆ x )

 

________________________________________ 
 
To solve TDSE:  Separation of variables => 
 special solutions   

€ 

Ψn (x, t) = e−iEnt  ⋅ Ψn (x)  
 

    

€ 

En 's,  ψn (x)'s  are from TISE :    ˆ H  Ψn (x) = EnΨ(x)  
 
General solution to TDSE: 
 

  

€ 

Ψn (x, t) = cn
n
∑ ψn (x) = cn

n
∑ e−iEnt  ⋅ψn (x)

cn = cn (t = 0) = ∫ ψn
*Ψ(x,0)dx = ψn Ψ(x,0)

 

 
 (ψn's form complete orthonormal set, since   

€ 

ˆ H  is hermitean!) 
 
Any hermitean operator associated with an observable has a complete orthonormal set of 
eigenfunctions, but the energy eigenfunctions are special in that they provide the time-
dependence of Ψ (x,t). 
 

Hilbert Space 
  (Normalizable fcns) 

Eigenfunctions of  
Hermitean operators 
w/ continuous eigenvalues  
(e.g. x, p) 
(sol'ns of SE that are non-
normalizable, but useful) 
 

"Suburbs of H-space"  
 
"Nearly normalizable =  
δ-function normalizable" 
 

all other  
non-normalizable fcns 
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Comment about probabilities and normalization:  consider normalized basis states ψn(x) 
and un-normalized Ψ  =  c1ψ1  +  c2 ψ2.     Note that <Ψ | Ψ >   =  | c1  |2  +  | c2  |2  ≠  1 .  
In this case, postulate 3 should read: 

  

€ 

Prob ( find q1 ) =
c1

2

c1
2

+ c2
2 =

ψ1 Ψ
2

Ψ Ψ
 

(You must divide by <Ψ | Ψ > for probabilities to add up to 1) 
 

  

€ 

n
∑ Prob ( find qn  ) = n

∑ ψn Ψ
2

Ψ Ψ
= n
∑ cn

2

n
∑ cn

2 =1 

_________________________________________ 
 
 
 
Review to this point:  
 
System Ψ (x,t).  Measure Q.      

€ 

ˆ Q  fn (x) = qn fn (x) 
 
Post3:  Find qn with   

€ 

Prob = fn (x) Ψ
2
 

 
Post4:  Ψ (x,t)       →        fn (x)  
                    collapse!  
 
 
 

€ 

fn (x) Ψ  is "projection of Ψ onto fn (x)" 
 
 
 
 
 
Euclidean space      

€ 

Rx = ˆ x ⋅
 
R = projection of  

 
R  along ˆ x  

 
     

Rx 
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Hilbert Space is a complex, infinite-dimensional vector space. 
Basis states:  ψn  from    

€ 

ˆ H  ψn = Enψn  
 
 
        Any wavefunction 

€ 

Ψ = cnψ
n
∑   

 
                complex numbers 
 
 
 
 
      all 
      perpendicular: <Ψn | Ψm > = δnm 

 

 

 
   
 
 
 
 
 
 
 
        a "poetic 
        representation" 
 
 
 
 
 

€ 

Ψ  =   cnψn (x)
n
∑                :  cn tells how much of Ψ is along ψn axis in  H-space 

€ 

    =   ψn Ψ
n
∑  ψn (x)  

 
 

ψ1 

ψ2 

ψ3 ψn 

ψ1 

ψ2 

Ψ= c1 ψ1 + c2 ψ2 

c1 = <ψ1 | Ψ> 

c2 = 
 <ψ2 | Ψ> 
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We have now seen 3 different equivalent ways to represent the wavefunctions: 

€ 

Ψ(x, t)      ,        Φ(p,t)     ,          cn{ }
Ψ(x, t)      =       x Ψ
Φ(p,t)       =       p Ψ

 

 

€ 

 cn  { }           =         ψn Ψ   { } 
{ cn } looks different than functions Ψ and Φ, but not really:  { cn } is an infinite set of 
numbers that associate a number ( cn ) with a "coordinate" n.   
Likewise Ψ(x,t) is ∞ set of numbers that associate a number Ψ(x) with a coordinate x. 
 
Multiple ways to represent the "state" of the system, like multiple ways to represent an 
ordinary vector: 

  

€ 

 
V    =    (Vx,Vy,Vz )   =     (Vx ',Vy ',Vz' )   =     (Vr,Vθ ,Vϕ ) 

There is a vector   

€ 

 
V  which exists independent of its representation in any particular basis. 

 
Likewise, there is a "state vector" | S > or | Ψ > which exists "out there" in an abstract 
Hilbert space, independent of any representation. 
 
Dirac's Notation:  abstract state vector =  | Ψ >   ( or | S > to avoid confusion with Ψ(x)). 
| Ψ > is called a "ket" because it is the right hand side of a "brac·ket" < ψn | Ψ >. 
 
When can two different operators have simultaneous eigenfunctions?  Answer (to be 
shown):  When they commute. 
 
(Recall Definition):  Commutator of operators 

€ 

ˆ A  and ˆ B 

€ 

= ˆ A , ˆ B [ ] = ˆ A ̂  B − ˆ B ̂  A =  an operator  

So, 2 operators commute if their commutator is zero:   

€ 

ˆ A ̂  B − ˆ B ̂  A ⇔   = ˆ A , ˆ B [ ] = 0  
Why would we care if there are states that are simultaneously eigenfunctions of 2 

€ 

operators ˆ A  and ˆ B   ?   
Recall:  eigenfunction of 

€ 

ˆ A  is a state of definite A, so eigenfunction of both 

€ 

ˆ A  and ˆ B =  
state of definite A and B. 
 

€ 

Example :   ˆ x ,  ˆ p x[ ] = ? 
 

  

€ 

 ˆ x ,  ˆ p x[ ] f =


i
x ∂f
∂x

  −   ∂
∂x

x ⋅ f( )
 

  
 

  

x∂f
∂x

 − x∂f
∂x

 − ∂x
∂x
 

 
 

 

 
 

1


⋅ f

         

=
−
i
⋅ f  

Operate on arbitrary state f(x): 
  

€ 

 = −


i
.  This is true for any f, so 

  

€ 

 ˆ x ,  ˆ p x[ ] = i 
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€ 

But,  ˆ x , ˆ y [ ] = 0  ,  ˆ x , ˆ p y[ ] = 0 , ˆ p x, ˆ p y[ ] = 0  
 
So, it is possible to have a state that is simultaneously a state of definite x and definite py. 
 
 
=>     AND 
 
 
 
 
both allowed simultaneously (subject to usual caveat about non-renormalizable states.) 
 
But, it is NOT possible to have simultaneous eigenstates of  

€ 

ˆ x  and ˆ p x  
 
 
     Can't 
     have 
     both! 
 
 
 
This is very different from the classical situation: 
    
   x, px = m vx     ←      can have well-defined,  
               precise values of x AND px 
 
 
In QM, if we start with a state of definite px  ( ψ =  ) and we measure x, then  
 

ψ collapses to a state of definite x (ψ = ) and the momentum information is  
destroyed. 
 

ψ 

x 

ψ 

x 
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Theorem:  If  

€ 

ˆ A , ˆ B [ ] = 0    ,then there exist simultaneous eigenfunctions of  

€ 

ˆ A  and ˆ B : 
 
 
Proof:  Given ψ such that 

€ 

ˆ A ψ = aψ  ,   ˆ B ψ = bψ (same ψ) ,  assume that Â ψ = a ψ, 
assume that ψ is a non-degenerate  eigenfunction of Â.  (We'll relax this condition later.)  
ψ = non-degenerate eigenfunciton of Â means that only ψ and multiples of ψ (=c ψ) are 
eigenfunctions.  No other linearly independent eigenstates exist. 
 
Now, operate with  

€ 

ˆ B   on both sides of Â ψ = a ψ: 
 

  

€ 

ˆ B  ˆ A  ψ
   

= ˆ B  a ψ = a ˆ B  ψ  (since ˆ B  is linear op)

ˆ A ˆ B ψ( ) = a ˆ B  ψ( )⇒ ˆ B  ψ is also eigenstate of ˆ A 
 

 
 
 
But assumed eigenstate of Â non-degenerate => 
 

€ 

ˆ B ψ    is a multiple of 

€ 

ψ ⇒ ˆ B ψ = bψ   for some b (Done).   
 
 
So ψ is a state of definite  A (value =a) and a state of definite B (value = b). 
 
_________________________________________________    
          
 

It can be shown that    
    

€ 

 ˆ H ,  ˆ p x[ ] = i ∂V
∂x

 

   (this would be a straightforward HW problem)  
 if V = 0 = constant (free particle), then ∂ V / ∂ x = 0, and in this case [  

€ 

ˆ H  , px ] = 0 
=> it IS possible to have states of definite energy and definite momentum. 

 
Easy, we’ve seen this: 

€ 

ψ(x) = Aei(kx−ωt )  
 

    

€ 

ˆ p ψ = kψ ,       ˆ H  ψ  =   
2k 2

2m
 

 
 

 

 
 ψ  

 
 
(But only true for free particle.  If any V(x) ≠ const. present, then eigenstates of   

€ 

ˆ H  are 
not p eigenstates.) 
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Now that we have some familiarity with commutation relations, we can show how 
expectation values change with time: 
 
Theorem:  For any (linear hermitean) operator  (that does not depend on time)  

    

€ 

d
dt

Q =
i


  ˆ H ,  ˆ Q [ ]   

Proof:   

€ 

d
dt

Q =
d
dt

Ψ ˆ Q Ψ =
∂Ψ
∂t

ˆ Q Ψ + Ψ
∂
∂t

ˆ Q Ψ( )  

 

Now, 

€ 

∂
∂t

ˆ Q Ψ( ) = ˆ Q ∂Ψ
∂t

    (since ˆ Q  assumed t - independent) 

 

€ 

⇒           d
dt

Q =
∂Ψ
∂t

ˆ Q Ψ + Ψ ˆ Q ∂Ψ
∂t

 

 

On the other hand, we know 
    

€ 

∂Ψ
∂t

=
−i


ˆ H   Ψ    (this is the TDSE)      ⇒  

      Note: (+) not (-), do you see why? 
 
 

    

€ 

d Q
dt

= +
i


ˆ H  Ψ ˆ Q  Ψ

Ψ ˆ H  ˆ Q  Ψ
     

−
i

Ψ ˆ Q  ˆ H  Ψ  

 

    

€ 

=
i

Ψ ( ˆ H  ˆ Q − ˆ Q  ˆ H )Ψ =

i


ˆ H , ˆ Q [ ]    (As we claimed!)     

________________________ 
So any observable Q whose operator  commutes with the Hamiltonian H has 

constant in time for any time Ψ(x,t). 

  

€ 

ˆ H , ˆ Q [ ] = 0⇒ Q = const ⇔ Q is conserved. 

In classical mechanics, conservation of Q  means  Q = constant for isolated system. 
 
In QM, conservation of Q means  < Q > = constant.   
Classically, measured conserved Q => get same Q every time.  But in QM, if you 
measure a conserved Q, get one of the qn's     In QM, conservation of Q is 
only evident if you make many measurements on an ensemble of identical systems. 

since H  is hermitean 
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Examples:  

●  
  

€ 

ˆ H , ˆ H [ ] = 0 ⇒
d
dt

E = 0  =>  < E > = constant. 

We really already know this:    is time independent.  

 

 ●  
  

€ 

ˆ H , ˆ x [ ] ≠ 0⇒
d x
dt

≠ 0             =>  < x > changes with time in general.  

 In fact, we can work out the commutator on the left:  
 

 

  

€ 

=
1

2m
 ˆ p   ˆ p  ,  ˆ x [ ]

-i
   

  +   ˆ p  ,  ˆ x [ ]
-i
   

  ˆ p 
 

 

 
 

 

 

 
 = −

i
m

ˆ p ,  which means 

 

€ 

d x
dt

=
ˆ p 
m

  

 
We’ve seen this many times before, but now it’s formally derived. It’s  “Ehrenfest’s 
theorem”, and tells us that expectation values obey Classical Laws. 
 

● You showed in a HW, 
    

€ 

ˆ H , ˆ p x[ ] =  i ∂V
∂x

 

  =>     

 
 Ehrenfest again: It’s Newton’s 2nd law!!  
 
Classically:     
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The Heisenberg Uncertainty Principle 

Recall standard deviation  

Classically, for any random variable x: 
 

€ 

x = xavg

x − x = deviation

x − x = avg deviation =  0

x − x( )2
=  avg (deviation)2 ≠ 0

x − x( )2
=  rms deviation ≅  | spread |  about avg

 

  
Theorem:  (proof later)  For any two (linear, hermitean) operators   
 

     This is called a  "Generalized Uncertainty Principle" 

 
Example:   

  

€ 

ˆ x  ,  ˆ p x[ ] =    i   ⇒     σ A   σ B ≥ 2    
 
 That’s the original Heisenberg Uncertainty Principle, derived now! 
 
Often written (sloppily) Δx · Δp ≈  
 
=> if x known precisely (Δx ≈ 0 ), Δp very large 
      if p known precisely (Δp ≈ 0 ), Δx very large 
 
Note:  large Δp implies large p (since, if p known small => Δp small) 
 
But if p large, then KE = p2/2m large.  So, if Δx small (particle confined to small space) 
then   is large => energy is large: 
 

  

€ 

KE =
p2

2m
≥
Δp( )2

2m
≅


2

2m(Δx)2  

We saw this in ground state of particle in infinite square well:   

=> it always takes a big energy to confine particle to a small space. 
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Note:  The Uncertainty Principle does not refer to uncertainty in the mind or even (just) 
the apparatus of the observer.  The uncertainty is in Nature itself.   If the particle has 
well-defined momentum, then is does not (can not) have a well-defined position. 
 
Proof of Generalized Uncertainty Principle (same as in text): 
 
                                          (Â - <A>) hermitean                 defines f 
 

€ 

σA
2 = Ψ ˆ A − A( )

2
Ψ   =   ˆ A − A( ) Ψ ˆ A − A( ) Ψ = f f  

Similarly,  

€ 

σB
2 = g g    where  g = ( ˆ B − B )Ψ 

 

€ 

σA
2σB

2 = f f g g ≥ f g
2
   

This is called the Schwartz Inequality (proven in homework)  Translating into more 
conventional “vector” notation, it’s equivalent to  

  

€ 

 
A 

2  
B 

2
≥
 
A ⋅
 
B 

2
  which is just A2B2cos2θ

< 1
    

Now < f | g > is some complex number z, and 
 

€ 

z 2 = Re z( )2 + Imz( )2 ≥ Imz( )2 =
z − z *
2i

 

 
 

 

 
 
2

 

=>  

€ 

σA
2  σB

2   ≥   1
2 i

 f g   −   g f  [ ]
 

 
 

 

 
 

2

 

 
Now   

€ 

f g =   ˆ A − A( )  Ψ   ˆ B − B( )  Ψ = 

 
 

€ 

= ˆ A ̂  B − A ˆ B − ˆ A B + A B     (My notation here is that 

€ 

A = Ψ ˆ A Ψ = ˆ A  

€ 

since A Ψ ˆ B Ψ = A Ψ ˆ B Ψ = A B   etc. I know that <A> is real, so it comes out of 
the ket 
 
Thus, 

€ 

f g = ˆ A ̂  B − A B − A B + A B       

€ 

         = ˆ A ̂  B − A B                  

€ 

Likewise g f = ˆ B ̂  A − B A  

€ 

⇒ f g − g f = ˆ A ̂  B − ˆ B ̂  A = ˆ A ̂  B − ˆ B ̂  A =    ˆ A , ˆ B [ ]   

 
Putting it all together, then,  

€ 

⇒    σA
2  σB

2   =   1
2 i

 ˆ A , ˆ B  [ ] 

 
 

 

 
 

2

   Which is the “generalized uncertainty principle”, done. 

     
         * 
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In addition to the position-momentum U.P.  :    
  

€ 

Δx ⋅ Δp ≥ 2  
 
there is the time-energy U.P.  : 

  

€ 

Δt ⋅ ΔE ≥ 2 .   This looks similar, but is quite different. 
 
In QM, time t is a parameter, not an observable.  You don't measure "the time of a 
particle".  There is no observable corresponding to time in (non-relativistic) QM. 
 
Δt ≠ uncertainty in time measurement (there is no "expectation value of time") 
 
Δt = time interval for system "to change significantly”     (made precise below) 
 

Recall 

    

€ 

d Q
dt

=
i


  ˆ H , ˆ Q [ ]    and σA
2σB

2 ≥
 ˆ A , ˆ B [ ] 

2i

 

 

 
 

 

 

 
  

 

    

€ 

Take ˆ A = ˆ H  ,   ˆ B = ˆ Q ⇒σ H
2σQ

2 ≥
1
2i

  ˆ H , ˆ Q  [ ]  

 
 

 

 
 

2

                                           =
1
2i


i
d Q

dt
 

 
 

 

 
 

2

                                           =


2
 

 
 
 

 
 

2

 
d Q

dt
 

 
 

 

 
 

2

 

  

€ 

⇒σ HσQ ≥


2
d Q
dt

 

 
Define Δ E = σH = ( 1 sigma ) uncertainty in energy. 
 

Define  

€ 

Δt =
σQ

d Q
dt

       ⇒       σQ =
d Q
dt

⋅ Δt ,  and we have our Energy-time U.P. 

Δt is time required for < Q > to change by 1 standard deviation σ. 
 
Examples:    
●  If Ψ is energy eigenstate, E known exactly => ΔE = 0 => Δt = ∞. 
 
It takes forever for a stationary state to change. 
 
●  If Ψ is superposition of E-eigenstates, E1 & E2 say, then ΔE ≈ | E2 - E1| and  

  This is consistent with what we’ve seen before on homeworks: 

  

€ 

Ψ
2

=
ψ1

2

2
+
ψ2

2

2
+ 2Re ψ1

*ψ2( )cos E2 − E1


 

 
 

 

 
 t . 


