
Physics 3220 – Quantum Mechanics 1 – Spring 2009
Problem Set #6

Due Wednesday, February 18 at 9am

Problem 6.1: Coherent states for the simple harmonic oscillator. (30 points)

In the last problem set we found that the ground state of the SHO has the minimum possible
product of uncertainties σxσp, while the other stationary states have larger uncertainty.
There exists another kind of state — not stationary — which also minimizes the uncertainty,
called a coherent state.

We will take as the defining characteristic of a coherent state ψα(x) that when acted on
by the lowering operator a−, we get the wavefunction back times a constant:

a−ψα(x) = αψα(x) , (1)

or in linear algebra language, ψα(x) is an “eigenvector” of a− with “eigenvalue” α. Different
coherent states have different values of α. Do not in general assume that the constant α is
real.

a) Using the result derived on the last problem set,∫ ∞
−∞

dx f ∗(x) (a±g(x)) =
∫ ∞
−∞

dx (a∓f(x))∗ g(x) , (2)

along with the eigenvector equation (1), evaluate 〈x〉, 〈p〉, 〈x2〉 and 〈p2〉 for the coherent
state wavefunction ψα in terms of α and constants. You may assume ψα(x) is normalized.
Hint: Remember how x̂ and p̂ may be written in terms of a+ and a−.

b) Calculate σx and σp, and check whether a coherent state minimizes the Heisenberg un-
certainty relation, that is, check whether σxσp = h̄/2.

c) Is the SHO ground state u0(x) a coherent state? What is the value of α?

d) Any wavefunction in the SHO can be expressed as a linear combination of SHO stationary
states un(x). Assume therefore that

ψα(x) =
∞∑
n=0

cnun(x) , (3)

for some constants cn (which may depend on the value of α). Show that the cn are given by

cn =
αn√
n!
c0 . (4)
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Another interesting property of coherent states is how their expectation values evolve in time.
Recall that stationary states have time-independent expectation values; coherent states are
different. To study this we find the time-dependence:

e) Assume that Ψα(x, t = 0) = ψα(x) and show that Ψα(x, t) is still a coherent state — that
is, show it satisfies

a−Ψα(x, t) = α(t)Ψα(x, t) . (5)

What is α(t) in terms of α and other quantities?

f ) In this part, for simplicity assume α is real (but α(t) might not be real). Take the results
for 〈x〉 and 〈p〉 from part a) and put the value of α(t) into them to find 〈x〉(t) and 〈p〉(t)
for Ψα(x, t). How does the result compare to the classical motion of a particle in a simple
harmonic oscillator?

Coherent states have many applications in atomic, molecular, and optical physics. For
instance, lasers and Bose-Einstein condensates are examples of coherent states.

Problem 6.2: Evolution of the gaussian wave packet for a free particle. (20 points)

a) First, a mathematical digression. We’ve already used the simple Gaussian integral formula,∫ ∞
−∞

dx e−x
2

=
√
π . (6)

Using this, prove the more general expression which will be useful in this problem,∫ ∞
−∞

dx e−ax
2−bx =

√
π

a
eb

2/(4a) . (7)

To do this, define a new variable y ≡
√
a[x + (b/2a)] and substitute it in; for reasons you

will see this is called “completing the square”.

Particles can be described by approximately localized “lumps” of probability. Because they
are in general built out of many stationary states, we think of them as a “packet” of plane
waves and call such wavefunctions “wave packets.”

For example, consider a free particle (V = 0, not the SHO anymore) with the initial wave
function

Ψ(x, 0) = Ae−ax
2

, (8)

where a and A are constants, with a real and positive.

b) Normalize Ψ(x, 0) and calculate the Fourier transform distribution φ(k) which tells you
how Ψ is built out of plane waves. The integral expression from part a) will be useful here.
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c) Now calculate the wavefunction Ψ(x, t) at all times. The integral expression is again
useful. The answer will be

Ψ(x, t) =
(

2a

π

)1/4 e−ax
2/[1+iΩt]

√
1 + iΩt

, (9)

where we have defined a new quantity, Ω ≡ 2ah̄/m.

Problem 6.3: Evolution of the gaussian wave packet, continued. (20 points)

a) Continuing from the last problem, calculate the probability density |Ψ(x, t)|2. Express

your answer in terms of the quantity w ≡
√
a/(1 + Ω2t2). Sketch |Ψ|2 (as a function of x)

at t = 0 and then at some much larger t. What happens to |Ψ|2 as time goes on?

b) Find 〈x〉 and 〈p〉.

c) Find 〈x2〉 and 〈p2〉. (Partial answer: 〈p2〉 = ah̄2.) Hint: an integral you found in the old
problem 3.3 may be useful.

d) What are σx and σp? Does the uncertainty principle hold? At what time t does the
system come closest to the uncertainty limit?

Problem 6.4: Plane waves and probability current. (10 points)

a) Consider the wavefunction characterized by a positive constant k0,

Ψ(x, t) = Aeik0x−ih̄k
2
0t/2m . (10)

Find the Fourier transform φ(k, t) of this wavefunction. What is this telling you about how
Ψ(x, t) is built out of plane waves? In words, how would you describe such a state?

b) Find the probability current J(x, t) for this wavefunction. Recall from HW#3 this was
defined to be,

J(x, t) ≡ ih̄

2m

(
Ψ
∂Ψ∗

∂x
−Ψ∗

∂Ψ

∂x

)
. (11)

Try to simplify your result as much as possible, and briefly interpret or make sense of the
(hopefully brief) expression you get – that is, explain what this result is telling us about the
physical state.

c) If you flip the sign of k0, describe what has changed physically and mathematically about
the state. How is this reflected in the result from part b)?
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