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Notice that in 1D problems, like the 1D infinite well or the 1D SHO, we only needed one 

number (n) to uniquely specify an eigenstate. This state label is called a quantum 

number or q-number and it is always in a 1-to-1 correspondence with the eigenvalues of 

an observable operator.   

 

But in 3D problems, we need 3 quantum numbers (nx , ny , nz ) to fully specify a state [ or 

equivalently ( n , ny , nz ),  ( n , nx , nz ), etc where 2 2 2
x y zn n n n= + + ].  Just specifying 

n (or just nx ) is insufficient, since the eigenstates of  (or ) are Ĥ xĤ degenerate.  In cases 

with degeneracy, more than one quantum number is required to specify a state, and the 

other quantum numbers are associated with other operators that must commute with the 

first.  If two operators commute (examples: x
ˆ ˆ[ H , H ] 0=  , x y

ˆ ˆ[ H ,H ] 0= ) then there exists 

a set of orthonormal simultaneous eigenstates of both operators.  We proved this for the 

case of operators with non-degenerate states, but it is also true when there are 

degeneracies.  (We will show below that when operators do not commute, it is impossible 

to find simultaneous eigenstates.) 

 

Claim: If N quantum numbers [example: (nx , ny , nz )] are required to uniquely specify a 

state, then there must exit N commuting operators [example: ] whose 

simultaneous eigenstates are non-degenerate and whose N eigenvalues provide the 

quantum numbers that uniquely label the state.  Such a set of operators is called a 

complete set of commuting operators (CSCO).  We will give a proof later, when we 

talk about matrix formulation of QM. 

x y z
ˆ ˆ ˆ( H , H ,H )














