
Formula Sheet for Exam 2 (These formulas will be given.) 

The classical wave equation:  
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The time-dependent Schrödinger Equation:  

2 2

2i V
t 2m x

∂Ψ ∂ Ψ
= − + Ψ

∂ ∂
(x)  

The standard deviation ( ) ( )2 22 2x x x xσ = ∆ = − = − x  

Momentum operator: xp̂
i x
∂

=
∂

 

Fourier Transform formulae (Plancherel's Theorem) : 
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A useful form of the delta function: 1
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Momentum space wavefunction : 
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Position-momentum commutator:  xˆˆ[x, p ] i=  

d Q i ˆˆ[H, Q]
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=        (assuming Q operator is independent of time) 

Heisenberg Uncertainty Principle: A B
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Exam 1 Review Topics:  Ch 1 and Ch 2 in Griffiths, Homeworks 1 thru 5, 

and Lecture Notes up thru/including "Dirac Delta function" 

• probability density and the wavefunction 

• normalization of the wavefunction 

• computation of expectation values and standard deviation, given a wavefunction 
Classical wave equation,  the form of a traveling wave : f(x,t) = f(x – v t), and 

superposition of solutions due to linearity of the equation. 

• Complex variables: polar form vs. cartesian form; complex conjugation; modulus 
(amplitude) of a complex variable 

• Separation of variables. 

• Deriving the TISE from the TDSE, starting with separation of variables 

• Relation between solutions to the TISE [  ] and solutions to the 
TDSE [ . ] where expansion coefficients c
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from "Fourier's Trick" 

• Solutions of the infinite square well. 

• Qualitative solutions to the TISE: Sketching the solutions ψn(x) , given V(x) 

• Energy eigenvalue equation and properties of the energy eigenfunctions (they form a 
complete, orthonormal set) 

• Free particles:  plane-waves statesΨ(x,t) = A ei(kx–ωt)  and wave packets;  phase 
velocity , vs. group velocityphasev = ω / k kgroupv d / d= ω ; relation between free particle 
wavefunction Ψ(x,t) and the Fourier transform φ(x). 

• Procedure for solving the TISE for specific potentials (such a finite square well or 
scattering from a step): 1) Write general solutions with unknown constants.  2) Apply 
boundary conditions to determine the constants. 

• Tunneling depth 

• Reflection and transmission coefficients and relation to the probability current. 



Exam 2 Review Topics:  Ch 1, 2, and 3 in Griffiths, Homeworks 1 thru 10, 
and Lecture Notes up thru/including Angular Momentum (upto p.H-9)  

• Review Exam 1 Material! Make sure you understand the things you missed on exam 1. 

• Hermitean operators and their properties (real eigenvalues, eigenstates that are 
complete, orthonormal) 

• Vectors spaces and Hilbert Space 

• The Postulates: 
P1: Physical states represented by square-integrable vectors in Hilbert Space 

P2: Observables are represented by Hermitean operators.  The result of a measurement 
is always one of the eigenvalues.  Operators for momentum p, position x, and any 
function of x, p 

P3: 
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P4: Wavefunction collapse 

P5: TDSE 

• Particle in a 3D box. Degeneracy. 

• Commutation relations, operator algebra 

• If operators commute, they can have simultaneous eigenfunctions. 

• Time-dependence of expectation values 

• Heisenberg Uncertainty Principle and time-energy uncertainty  

• Angular Momentum operator ˆ ˆ ˆL r p= ×  

• Operator algebra: [A+B, C]  =   [A, C] + [B, C]  ;   [AB, C]  =   A[B, C] + [A, C]B 

• Angular momentum raising and lowering operators and proof of angular momentum 
eigenvalue equations: , possible values of l, m. 2 2
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