
University of Colorado, Department of Physics
PHYS3220, Spring 11, HW#8

due Fri, Mar 11, in class (extended)
- Please note: Late Homeworks will not be accepted -

1. Symmetric potentials (Griffiths, Problem 2.1(c))
Prove the following statement: If V (x) is an even function (that is, V (−x) = V (x)), then
the stationary state wave functions χ(x) can always be taken to be either even or odd.

2. Attractive delta potential
Consider a particle of mass m subject to an attractive delta potential V (x) = −V0δ(x),
where V0 > 0. Show that this particle has only one bound state. Find the energy and the
wave function of the state.

3. An expanding infinite square well
Consider a particle of mass m in an infinite square well, that extends from 0 to a. Assume
that the particle is in the ground state of the square well for t < 0. At t = 0 the size of
the square well is suddenly expanded, so that it extends from 0 to 2a leaving the wave
function of the state undisturbed.

a) Write down the wave function Ψ(x, t = 0) in the new larger well (Think carefully
about the different regions in the new well).

b) The wave function Ψ(x, t = 0) can be expanded as a linear combination of the statio-

nary states, χn(x), of the new larger well, i.e. Ψ(x, t = 0) =
∞∑

n=1
cnχn(x). Determine

a formula for cn and show by summing the first terms that the sum over |cn|2 is
approaching 1. Does this make sense? Explain.

c) Assume that the energy of the particle is measured at some time t > 0. What is the
expectation value < E > of the energy? What is the probability that the energy of
the first excited state (n = 2) of the new well is measured?

d) Calculate the smallest period of time, τ > 0, at which Ψ(x, τ) = Ψ(x, t = 0).

e) Draw a picture of Ψ(x, t) at t = τ/2.

- There is another problem on the back -



4. Coherent states for the harmonic oscillator
In a harmonic oscillator a coherent state ψα(x) is defined as follows: When acted on by
the lowering operator â−, we get the wave function back times a constant:

â−ψα(x) = α ψα(x) , (1)

or in linear algebra language, ψα(x) is an eigenvector of â− with eigenvalue α. Different
coherent states have different values of α. Do not in general assume that the constant α
is real.
(Coherent states have many applications in atomic, molecular, and optical physics. For
instance, lasers and Bose-Einstein condensates are examples of coherent states.)

a) Show that for any square-integrable functions f(x) and g(x)

∞∫

−∞
f∗(x)(â±g(x))dx =

∞∫

−∞
(â∓f(x))∗g(x))dx (2)

b) Use Eq. (2) along with the eigenvector equation (1) to evaluate 〈x〉 and 〈p〉 for the
coherent state wave function ψα in terms of α and constants. You may assume ψα(x)
is normalized. (Hint: How can x̂ and p̂ be written in terms of a+ and a−?)

c) Is the ground state χ0(x) of the harmonic oscillator a coherent state? What is the
value of α?

d) Any wave function of the harmonic oscillator can be expressed as a linear combination
of stationary states χn(x) of the harmonic oscillator. Assume therefore that

ψα(x) =
∞∑

n=0

cnχn(x) , (3)

and show that the cn are given by

cn =
αn

√
n!

c0 . (4)

(Hint: Operate with â− on Eq. (3).)

e) Another interesting property of coherent states is how their expectation values evolve
in time. Recall that stationary states have time-independent expectation values;
coherent states are different. Assume that Ψα(x, t = 0) = ψα(x) and show that
Ψα(x, t) is still a coherent state — that is, show it satisfies

â−Ψα(x, t) = α(t)Ψα(x, t) . (5)

What is α(t) in terms of α and other quantities?

f) In this part, for simplicity assume α is real (but α(t) might not be real). Take the
results for 〈x〉 and 〈p〉 from part b) and put the value of α(t) into them to find 〈x〉(t)
and 〈p〉(t) for Ψα(x, t). How does the result compare to the classical motion of a
particle in a harmonic oscillator?
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