I: Thinking about the wave function

In quantum mechanics, the term wave function usually refers to a solution to the Schrödinger equation,

\[i\hbar \frac{\partial \Psi(x, t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x, t)}{\partial x^2} + V(x)\Psi(x, t), \]

where \(V(x) \) is the potential energy experienced by a particle of mass \(m \) and \(\Psi(x, t) \) is the wave function in this one-dimensional example.

A. Let’s say you have a system where the wave function is of the form:

\[\Psi_1(x, t) = f(x)e^{i\omega t} \]

where \(f(x) \) is some real-valued function of \(x \).

1. Is \(|\Psi_1(x, t)|^2 \) real? Is it positive? Do your answers make sense given the physical meaning (as discussed in class) of \(|\Psi_1(x, t)|^2 \)?

2. Does \(\Psi_1(x, t) \) depend on time? Does \(|\Psi_1(x, t)|^2 \) depend on time?

3. Write down an expression for \(\langle x \rangle \). Does it depend on time? Is it real?

Describe in words how you interpret this quantity. Precisely what information do you get from \(\langle x \rangle \)?

4. Write down an expression for \(\langle g(x) \rangle \) where \(g(x) \) is any real-valued function of \(x \). Does it depend on time? Again, how would you physically interpret \(\langle g(x) \rangle \) (hint: think about what you would actually measure)?
B. Now let’s say your system is a bit more complex (pun intended):

$$\Psi_2(x, t) = f(x)e^{i\omega t} + g(x)e^{2i\omega t}$$

where $f(x)$ and $g(x)$ are real functions of x which are orthogonal to each other.

1. Is $|\Psi_2(x, t)|^2$ real? Is it positive? Do your answers make sense given the physical meaning of $|\Psi_2(x, t)|^2$?

2. Does $|\Psi_2(x, t)|^2$ depend on time?

3. Write down an expression for $\langle x \rangle$. Does it depend on time? Describe the difference(s) between this result and the result for section A.3 above.

Even though f and g are unknown functions of x, do your best to give a physical description or interpretation of this new result for $\langle x \rangle$ for the state Ψ_2.

✓ Check your results with a tutorial instructor.
C. Now, we will deal with a new wave function at a single moment in time,
\[\psi_3(x) = \Psi_3(x, t = t_0), \]
represented by the graph below (a sine curve from \(\pi/4 \) to \(5\pi/4 \) and zero everywhere else).

1. Find a value of A which will normalize \(\psi_3(x) \).

2. Using physical arguments (i.e., without doing the integral), what do you think \(\langle x \rangle \) is? (If you feel uncertain, you can check by doing the integral)

3. We want to find the standard deviation for \(x \) for this system. First, do you think that \(\langle x^2 \rangle \) is larger/the same/smaller (circle one) than \(\langle x \rangle^2 \)? Now, actually calculate \(\langle x^2 \rangle \).

4. What is \(\sigma_x^2 \)? What is the probability that you will find the particle represented by \(\psi_3(x) \) in the range \(\langle x \rangle \pm \sigma_x \)? (Recall that \(\sigma_x^2 \equiv \langle x^2 \rangle - \langle x \rangle^2 \).)
D. Now we somehow create a system where for an instant, the wave function,
\(\psi_4(x) = \Psi_4(x, t = t_0) \), looks like the graph below.

\[\psi_4(x) \]

1. Find the value of A which will normalize \(\psi_4(x) \).

2. Using physical arguments (i.e., without doing the integral), what do you think \(\langle x \rangle \) is? (If you feel uncertain, you can check by doing the integral)

3. Estimate \(\langle x^2 \rangle \) and \(\sigma_x \). Indicate on the graph above the range which you think represents \(\langle x \rangle \pm \sigma_x \).

 Bonus (i.e., come back to this if you have time after finishing the rest of the tutorial), calculate \(\langle x^2 \rangle \) and \(\sigma_x^2 \).

4. How do you physically interpret \(\sigma_x \)?

5. What are the possible values of a measurement of \(x \) on any of these identical systems? Do you “expect” to measure \(x \) equal to the expectation value of \(x \)?

✓ Check your results with a tutorial instructor.
II: Classical current

A. Consider a thin, insulated wire with a current which depends on the position along the wire. Let the current be given as \(I(x) \), where a positive value of \(I \) represents current flowing to the right.

\[
\begin{array}{c}
 \text{I} \\
 \longrightarrow \\
 \text{a} \quad \text{b} \\
 \longrightarrow +x
\end{array}
\]

Student A defines \(Q_{ab}(t) \) to be the total electric charge in the wire between points a and b (see figure above). Student B points out that since charge cannot be created or destroyed (i.e., charge is conserved), \(Q_{ab} \) cannot be a function of time. You are called in to settle the dispute. Could \(Q_{ab} \) depend on time? What is your reasoning?

B. No matter what you said above, suppose we told you we had set up a situation where at an instant of time, \(t_0 \), we had measured \(I(b) > I(a) \).

1. What does this situation imply about the time dependence of \(Q_{ab} \)?

2. Construct a formula for the time derivative of \(Q_{ab} \) in terms of \(I(a) \) and \(I(b) \)
Useful Formulas

\[\int_{a}^{b} \sin^2(x - x_0) \, dx = \left(\frac{x - x_0}{2} - \frac{\sin(2(x - x_0))}{4} \right) \bigg|_{a}^{b} \]

\[\int_{a}^{b} x \sin^2(x - x_0) \, dx = \left(\frac{x^2 - x_0^2}{4} - \frac{\cos(2(x - x_0))}{8} - \frac{x \sin(2(x - x_0))}{4} \right) \bigg|_{a}^{b} \]

\[\int_{a}^{b} x^2 \sin^2(x - x_0) \, dx = \frac{1}{24} \left(4x^3 - 6x \cos(2(x - x_0)) + (3 - 6x^2) \sin(2(x - x_0)) \right) \bigg|_{a}^{b} \]