Phys 1110, 10-12

Applying conservation of momentum:  collisions.

A collision refers to two objects hitting one another, interacting with (probably very large) forces for some (probably very short) amount of time, and then continuing along (probably in radically altered paths, and maybe pretty squooshed!) It's e.g. a baseball bat striking a ball, a superball bouncing off the floor (the two objects are earth and ball there!), two cars running into one another head on. There are different kinds of collisions, as we will see, and at first glance they all seem very hard for us to make sense of - forces that are HUGE and very short lived - we probably can't assume constant acceleration, so how can we make predictions about what happens before and after? The answer comes from the big idea of the previous chapter: conservation of momentum. It turns out that we can often make EXACT predictions about what's going to happen, even if we know almost NOTHING about the details of the crash, or the materials involved... !

Let's begin by defining a new quantity, called IMPULSE.  Here's the logic behind the definition: it seems like if you have a BIG force acting for a SMALL time, or a SMALL force acting for a LONG time, you might end up with similar final results. So if we multiply force*time, perhaps we will get something interesting. That's impulse = force*time. To be precise, if the force depends on time, we want to take F*dt (for some very tiny amount of time dt), and then add this up for a bunch of little dt's... in other words

Impulse = 
[image: image32..pict].   (Impulse is often abbreviated J, for reasons I don't know!) 

Remember from last chapter: Newton's law, F = m a can also be written F = m dv/dt,  or equivalently F = dp/dt  (since p  is just mv, as defined in the last chapter)  So that means

F dt = dp.  

That's another reason why impulse is such a useful idea - if you want to know the change in motion of a body, i.e. the change in momentum (m (v), you just need to know the impulse F (t. 

Think about F(t = (p.  Remember the tablecloth demo in class? Why didn't the plate or glass move much, i.e. why was (p so small for the objects? It was because F was fairly small (just a little friction), and (t was really small - that's why I yanked the cloth so fast! It didn't make the force small (that's just whatever it is), but I made the impulse small, which means the objects didn't change their motion (momentum) very much. 

When might you care about impulse? Any time you have a collision! 

Example:  You're driving 20 m/s east, with no seat belt, and hit a brick wall. Your head will not start to accelerate (decelerate?) until it hits the windshield, and then it will stop rapidly.

What's the impulse your head experiences? That would just be 

(p  = [mv(final) - mv(init)]  =  [0 - (5 kg)*(20 m/s) ] = 100 kg m/s (west)  

(I'm guessing your head is about 5kg?) 

Does that hurt? It depends! It might - if the time is short enough. 

In such a crash, which lasts perhaps a time (t=.01 s.  (That corresponds to a distance if you DIDN'T stop of v(init)*(t = 20 cm, about the thickness of your head.) So what's the force your head feels?  

Use F = (p/(t =  100 kg m/s (west)/ (.01 sec)  

                        = 1E4 N (West).  

Which corresponds to about 1 ton. This feels about the same as having a car sitting on your head...

If there's an airbag (or seatbelt), you can increase the time you take to accelerate a lot, perhaps a factor of 10 or more. That's all you need to survive, in many cases. (Also, the airbag spreads the force over a larger area - that's another bit of physics related to pressure, something for later!) 

The impulse is the same with or without the airbag, it's a constant. The force you feel will depend on the details of the crash. That's a useful thing about impulse, it doesn't depend on details we might not know about! 

Another example: A baseball bat hits a ball. The pitcher throws at 40 m/s, and after the swing, the ball flies away at 80 m/s. Assume m = .3 kg (I'm not sure what baseballs weigh, so I made it up!) 

Before the collision: there's a ball moving LEFT towards you, mass m, velocity vi.

After the collision: there's a ball moving RIGHT away from you, mass m, velocity vf.

(Let's define "right" as positive here)

[image: image1.wmf]The impulse on the ball is F(t, but I have no idea how to computer EITHER the force (which is huge, short, and complicated) or (t...  Am I stuck? No - because it's easy to work it out using impulse = (p!

(p= m vf - m vi = m (+80 m/s - (- 40 m/s)) = 

                             (.3 kg)*(+120 m/s) =  +36 kg m/s.

Notice that we "subtracted a minus". Graphically, we had 

arrows in opposite directions, and the difference gives you a LARGER arrow (to the right, in this case)

I can't tell you what the force is unless we know the collision time. But a reasonable guess might be about .01 sec (??), in which case F = (p/(t = +3600 N.  A big force! Notice that we're computing the impulse ON the ball (and thus, the force ON the ball), so it makes sense that it's to the right!

By Newton's III law, there will be an equal and opposite force on the bat (for the SAME time), 

so the impulse on the bat will be the OPPOSITE of this. Since the mass of the bat is much larger (and it's connected to you), the change in velocity of the bat is not as dramatic, but nonetheless you feel he bat recoil to the left some, when you hit the ball. 

I might argue that in Karate the force is important, so you make the blow SHORT (Fixed (p, small (t, means big F) In golf, it's (p of the golf ball you care about (you want lots of speed!), so you want a large impulse => follow through.  (Big F and big (t will give you a big (p) 

When and why is momentum conserved?  Recall from Ch. 9:

For any system of particles which is isolated from any net external force, the TOTAL momentum of the system is constant in time (i.e. conserved).  

This is always true. There are no exceptions!


[image: image2.wmf]
P(tot) = m1 v1  + m2 v2     (before)

P(tot)  = m1 v'1  + m2 v'2     (after)   ...... 

And these two lines are EQUAL.  Total momentum is conserved - it's the same before and after the collision.  If you know about what comes in, you can say something definite about what goes out - no matter what the details of the interaction might be.

Momentum conservation is especially useful for collisions. The forces involved may be so complicated you cannot practically use F=ma to figure out what happens. And, since some energy may go into heat, sound, or deformation in a collision, energy conservation may also not be useful. 

But as long as there are no OUTSIDE forces involved (only internal ones, no matter how big!) then p conservation often lets you figure out the outcomes!

Discussion:  

If you drop a ball, it speeds up. Clearly, pf is not equal to pi.  What's the deal? Why is momentum NOT conserved? Because the ball is not isolated - there is an external force on it (gravity). 

However, the system "ball + earth" is isolated, and that means p(ball) + P(earth) is conserved.

Because m(earth) is so huge, you don't notice the TINY velocity it develops as it falls towards the ball! But it's there. v(earth) is small, but mv(earth) is NOT. In fact, it's exactly as large (opposite in direction) as mv(ball)! (And in principle measurable. This is how we have detected planets in other solar systems - from their tiny pull back on the star they orbit around!) 

You can always expand your "worldview", and make momentum of a system be conserved. It's just not always convenient (like in the ball-earth problem, where P(earth) is too hard to detect.)

Example:

[image: image17.wmf]If you have a mass sliding across a plank with friction, 

you wouldn't tend to use conservation of momentum - there is an external force (friction) which means pi is not conserved. You'd probably look for some other principle (like N-II)

[image: image18.wmf]However, for THIS problem, a mass sliding across a plank, which in turn is on an ice rink... then you MIGHT want to use conservation of momentum. But you'd need to consider both objects together as your system:   p1 + p(plank) is conserved!  The object slows, the plank speeds up, and the total momentum of the two together never changes. 

Examples using conservation of momentum:  

[image: image19.wmf]1) An "explosion" problem (which is a lot like a collision, except backwards) 

I'm standing on a frictionless pond, motionless. 

How can I get off?  I could toss my 5 kg camera!

Initially, pi = mc vc + ms vs = 0 + 0 =0   (c=camera, s=steve)

Finally, after I toss the camera, pf = mc vc' + ms v's.  

pi and pf are equal to one another by conservation of momentum (the system is isolated) 

So ms v's  + mc v'c =0  or v'(steve) = (-mc/ms)* v'(camera) 

If mc=5 kg, and mss=50 kg, and I can toss the camera with speed 10 m/s to the right,

then I'll recoil at  -5 kg*10 m/s /50 kg = -1 m/s (i.e. LEFT) and slide slowly but surely off the rink.

Note: Signs are important, especially in a "1-D" problem like this. Often I use v = |v| to represent speed (the magnitude of velocity). However, in 1-D problems, I sometimes use v to MEAN the velocity, and then it CAN have a sign telling you which way it goes. Just watch out, be careful about your own choice of notation.

2) An "inelastic collision" problem.  (To be defined shortly)

[image: image20.wmf]Toss a hunk of clay at a block, and they'll stick together. (Both sit on a frictionless surface.)

What is the final speed of the clay/block system?

Initially, pi = mc vc + mb vb=   mc vc+ 0    (c = clay,  b = block)

Afterwards, when they stick, you have ONE object with total mass (mc+mb), and it has some final velocity vf. By conservation of momentum pi = pf,  which means mc c = (mc+mb) vf, or 

vf = mc vc / (mc+mb)  

Note:  The formula is a vector equation - it tells us the final block/clay blob moves in the same direction as the clay was thrown, but with a smaller final speed (because mc/ (mc+mb) is always less than one)   This makes sense to me - try to picture it!

This last example could just as well have been a bullet fired into a wooden block (and sticking inside), a technique used by ballistics experts to determine the bullet's speed. It's a lot easier to measure the much slower vf of the combined system (and then weigh the block and bullet), and thus deduce the large, hard to measure, but often important initial speed of the bullet.  

[image: image21.wmf]A practical way to do this experiment is called the ballistic pendulum:  You fire the bullet into the block which hangs on a pendulum. You can measure the maximum height of the bullet/block pendulum (that's much easier than measuring velocity) and you can deduce v....

It's a tricky problem, and well worth your thinking over all the steps. If you don't understand - think about it or ask (and or read the book) It's worth making sense, don't just look at the formulas. The answer isn't what matters - it's the logic... Let's talk through the steps:

First step:  When the bullet hits the wood, it QUICKLY embeds itself. This is a collision, it happens very fast. We just worked out the details above! You can use conservation of momentum for the bullet+block system, EVEN THOUGH there is a rope and gravity  (i.e. other, external forces) as long as the collision is very short, so that F(external) (t is very small.  Those external forces are NOT huge - they're ordinary sizes, so the small time of the collision is what allows us to get away with conservation of momentum. 

Note that momentum is NOT conserved throughout the whole problem, because in the end everything stops (at the top of the swing), clearly p has disappeared! So we will have to separately analyze the SECOND STEP:  which is the rising pendulum AFTER the collision.

In step 1, the wood gets heated, there is noise etc. There is NO reason to believe energy is conserved. (In fact, you can work out how much energy is lost, and it's a HUGE fraction of the initial energy of the bullet!) So we MUST use conservation of momentum here.  We already did that in the previous example, and found v' = m v / (m+M) 

In step 2, gravity matters, momentum is NOT conserved. However, now we just have a simple pendulum. We've looked at this back when we studied conservation of energy - the total mechanical energy of the system AFTER this point is henceforth conserved!  So 

(KE+PE)final = (KE+PE)(just after the collision)   


[image: image3.wmf]
Combining this with v' = m v / (m+M) gives

v = (M+m)v' / m = (M+m) Sqrt[2 g h] / m.  

That's the incident speed of the bullet we wanted, all in terms of easily measured things. 

Note:  You can NOT use conservation of energy from the very start. Try it, you'll see that the bullet begain with LOTS more energy than we have at the end - it got lost in the collision!

Elastic and inelastic collisions:
There are different kinds of collisions. In all of them, if external forces are absent (or small, or not important) you can always use conservation of momentum (as we've seen). But what about energy?

ELASTIC COLLISIONS:  (Like superballs!)  These are collisions where energy is also conserved!

(To be explicit - total kinetic energy of all particles is the same before and after.)


[image: image4.wmf]
This gives you more info (another equation!), which helps predict the final state. Elastic collisions are of perhaps physicist's favorites. You have energy and momentum conservation, and can make very strong predictions. This is how all fundamental particle collisions work (e.g. electrons colliding with one another). Maybe that's why many  physicists like pool (billiards): in principle you can predict exactly what will happen, if you can just control all your initial conditions!

INELASTIC COLLISIONS:  Some kinetic energy is "lost" into the form of heat energy or sound energy (or etc) Energy is always conserved, of course, but if kinetic energy is lost you have no useful extra equation. (Think of a car crash, e.g., or the previous example of a bullet going into a block of wood)

TOTALLY INELASTIC COLLISIONS:  The most extreme example of inelastic collisions is when objects stick together. This means you lose the most KE that you possibly can. 

Examples:  Train cars coupling together, or a clay ball sticking to a surface it's tossed to.

We saw examples of all these over the last few pages. Totally inelastic collisions are often easy to deal with because all the objects go off together with the same final velocity (because they all stuck together). Even though you don't get an "extra equation" (from energy conservation) you don't have so many different final unknown velocities!  

Example of elastic "billiard ball" collision in 1-D:  In billiards, the masses are all the same

[image: image22.wmf]In this example, we will take the slightly simplified (but common) situation where m2 starts at rest.

p conservation:  m1 v1 + 0 = m1 v1f+ m2 v2f.  (We have 2 unknowns, v1f and v2f) 

Note: the masses are the same, so they cancel, and so we get v1f = v1 - v2f
KE conservation: (because it's elastic! )    
[image: image5.wmf] 

The common "1/2" and "m" cancels from here, giving 
[image: image6.wmf] 

We can plug in our previous expression for v1f into this equation. Here's what I get (try it yourself!) 
[image: image7.wmf]
I can subtract
[image: image8.wmf] from both sides, cancel the common factor of 2v2f, and we get   0 = v2f - v1   .   

Conclusions/results:

v2f = v1    (that says the 2nd ball leaves with the original ball's incoming speed)

v1f = v1-v2f = 0  (that says the incoming ball stops dead)

What happened? The cue ball (v1f) STOPPED.  The target ball (v2f) took on the full original speed of the cue ball.    It's like they "traded places", conserving p and kinetic energy in the process. 

If you work it out with m2 different from m1, here's the more general result:


[image: image9.wmf]          and       
[image: image10.wmf]
Stare at these a little - think of some limits (m1=m2? m1 tiny? m1 huge?) Try to make some sense of them, see what they tell you...

This last example was for 1-D. We could do 2-D problems also - just conserve p in both the x direction and y direction (separately!) The idea is the same, although the algebra gets a little more complicated sometimes. 

Example:  A 1 kg cart on the air track moves at +3 m/s and hits a stationary 2 kg cart. Afterwards, the 1 kg cart moves at -1 m/s (i.e. it bounced back). Suppose the 2 kg cart moves forward at 2 m/s.

Question 1: Do you believe my numbers?

Question 2: Is the collision elastic?

There's nothing obviously crazy about the numbers, but at a minimum I must verify that p(total) is conserved, otherwise the example would be total nonsense.

m1v1 + m2 v2 (initial) = 1 kg*(+3 m/s) + 0 = +3 kg m/s

m1 v1' + m2 v2' (final) = 1kg* (-1 m/s) + 2 kg*(2 m/s) = 3 kg m/s,  so that's good! 

We've just convinced ourselves that, at least,  p(initial) = p(final)

How about energy?

KE(init) =  (1/2) 
[image: image11.wmf] = 4.5 J

KE(final) = 
[image: image12.wmf] =.5 J + 4 J = 4.5 J...

So energy is exactly conserved, this collision was indeed elastic!

If my cart 2 had left at, say, +1 m/s, we'd have LESS energy in the end, which means it was a "fender bender", some energy was lost.
If my cart had left at, say, +3 m/s, we'd have MORE energy in the end. This is physically impossible (unless there were some springs or motors or other hidden sources of energy!) 

[image: image23.wmf]APPENDIX:  Proof of conservation of p for a 2 body collision:

( Before they touch, there are no forces anywhere. 

So for EACH particle: Fnet = ma = m p/t  = 0

That tells us p for each individual particle is conserved, and so ptot = p1+p2 is too.

( During the collision period, there may be very complicated (time dependent) forces. At any instant, there will be F12 (Force On 1 By 2) and also F21 (Force on 2 by 1).

By Newton's III law, though, at each instant F12 = -F21.

For object 1, we know p1/t = F12, (that's Newton II!)   which means p1 = F21 t

or, to be more accurate, p1 =
[image: image13.wmf]
For object 2, similarly, p2/t = F221  which means p2 = F21 t  = -F12 t
or, to be more accurate, p2 =
[image: image14.wmf] =XX - 
[image: image15.wmf]
Now consider  p1 +  p2 = F12 t + -F12 t = 0

(or more precisely, p1 +  p2 =
[image: image16.wmf] = 0

Thus, p1 + p2) =0

Which tells us  p(tot) = p1 + p2 ist he same before, during and after collision. 

Total Momentum (of the system, not of any one given particle) is conserved!

This proof is really intimately tied in with Newton's third law.  Conservation of momentum is basically another way of stating Newton's III law, and vice versa. (If one is true, the other is as well) 

It's just another way of thinking about the same big idea.
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