Do you have a clicker with you today?		Have you taken physics before?
		A) Took it and understood it well.
A)Yes!		B) Took it but did not understand it well.
B)No, I do not have a clicker, so I cannot vote		C) No, this is my first time!

A tennis racket and can of balls (together) costs \$110. The tennis racket alone costs \$100 more than the can of balls alone. How much does the can of balls alone cost?
A) \$5
B) \$10
C) \$11
D) \$100
E) None of these

1 meter = 100 centimeters (1 m = 100 cm). How many square centimeters in one square meter? (How many cm^2 in 1 m^2 ?)	
A) 10	
B) 100	
C) 1000	
D) 10,000	
E) 100,000	

Speed is defined as distance/time. If it takes 20 s for Jill to travel 1.0 km in her car, how fast is Jill travelling in m/s?

B) 20,000 m/s

C) 50 m/s

D) 0.05 m/s

You drive 4 miles at 30 mi/hr and then another 4 miles at 50 mi/hr. What is your average speed for the whole 8-mile trip?
A) more than 40 mi/hr
B) equal to 40 mi/hr
C) less than 40 mi/hr

The position vs time of a train moving on a straight track is shown. Compare the average velocity, \bar{v} , between times 1 and 3 with the instantaneous velocity, v_2 , at the instant in time labeled 2. A) $\bar{v} = v_2$ B) $\bar{v} > v_2$ C) $\bar{v} < v_2$ The "strobe photograph" below shows a ball rolling along a surface. The camera flashed once a second, and the time is shown above each image. Which graph shows the ball's velocity vs. time?

A sprinter's velocity increases, reaches a maximum, and then decreases according to the equation $v = \alpha t - \beta t^2$, with $\alpha = 20 \frac{m}{s^2}$ and $\beta = 5 \frac{m}{s^3}$. Find the time when the sprinter reaches maximum speed. A) 1 s

B) 2 s

C) 4 s

D) none of these

In which of the following cases does a car have a negative velocity and a positive acceleration? A car that is traveling in the
A) +x-direction increasing in speed

- B) -x-direction increasing in speed
- C) +x-direction decreasing in speed
- D) -x-direction at a constant 20 m/s
- E) -x-direction decreasing in speed

In which of the following cases does a car have a negative velocity and a negative acceleration? A car that is traveling in the
A) +x-direction increasing in speed
B) -x-direction increasing in speed
C) +x-direction decreasing in speed
D) -x-direction decreasing in speed
E) -x-direction at a constant 20 m/s

The distance x traveled by a ball in a time t is given by the formula, $x = \frac{1}{2}at^2$,
where a is a non-zero positive constant. If the ball travels a distance d in T seconds, how far will it have traveled (total distance) in $3T$ seconds?
A) 3 <i>d</i>
B) $\frac{9}{2}d$
C) 9 <i>d</i>
D) Impossible to know without values for <i>a</i> and <i>t</i>

```
The distance x traveled by a ball in a time t is given by the formula,

x = \frac{1}{2}at^2,

where a is a non-zero positive constant. If the ball travels a distance d in T

seconds, how far will it have traveled (total distance) in 3T seconds?

A) 3d

B) \frac{9}{2}d

C) 9d

D) Impossible to know without values for a and t
```

A student is asked the following question:

"A car is moving to the right with a constant velocity of v = +21 m/s. Suddenly the brakes are applied, and the car slows to a stop with constant acceleration in 3 seconds. What is the acceleration a of the car?"

Which of the following formulas should the student use to answer the question?

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

C)
$$v^2 = v_0^2 + 2a(x - x_0)$$

D)
$$\bar{v} = \frac{v_0 + v_0}{2}$$

A rock is given an initial throw downwards with speed v_0 . This time UP is chosen as the positive direction. What is the correct formula for velocity as a function of time?

- A) $v = v_0 + gt$
- B) $v = v_0 gt$
- C) $v = -v_0 gt$
- D) $v = -v_0 + gt$
- E) None of these

A rock is thrown (initial speed is v_0) straight down at t = 0. Ignore air resistance. It strikes the ground a distance h below. A student is asked to compute the final speed of the rock, just before it hits the ground. Which formula should she use to find the answer most quickly?

h $\int v = v_0 + at$ B) $x = x_0 + v_0 t + \frac{1}{2}at^2$ C) $v^2 = v_0^2 + 2a x - x_0$ D) None of the above will work

E) None of the above statements are true.

```
A ball is thrown straight up with an initial speed v_0. Assume no air resistance. To compute the time to reach the top (apex), which formula is the easiest and quickest to use?
```

A)
$$v = v_0 + at$$

B)
$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

C)
$$v^2 = v_0^2 + 2a(x - x_0)^2$$

D) None of the above will work

Two stones are dropped into a bottomless pit. Stone 2 is dropped 2 seconds after stone 1 (which is dropped at $t = 0$). Assume no air resistance. The velocity of stone 1 is $v_1 = g \cdot t$. Which is the correct formula for v_2 after stone 2 is dropped?	
A) $v_2 = g \cdot t$	
B) $v_2 = g \cdot (t - 2 s)$	
C) $v_2 = g \cdot (t + 2 s)$	
D) None of these	

Two stones are dropped into a bottomless pit. Stone 2 is dropped 2 seconds after stone 1. Assume no air resistance. As both stones fall, the difference in their velocities		Two stones are dropped into a bottomless pit. Stone 2 is dropped 2 seconds after stone 1. Assume no air resistance. As both stones fall, the difference in their y-positions	y
A) Increases with time		A) Increases with time	
B) Decreases with time		B) Decreases with time	
C) Stays constant as time goes by		C) Stays constant as time goes by	
	1		