

How many of the following equations make no sense?
$\vec{A} = \hat{j}$
$\vec{A} = 3\hat{i} + \hat{j} - 5\hat{j}$
$\vec{C} = \vec{A}/3$
$\vec{C} = \vec{A} + \hat{i}$
A) 0 (they all make sense!) $\vec{c} = 4 - \hat{i}$
B) 1
C) 2
D) 3
E) 4 or more are nonsense

 The components of vectors A and B are given by: Ax = 1, Ay = 1, Bx = -2, By = 2.
 If the instantaneous velocity of a car is zero (v = 0), can the acceleration of the car be non-zero?

 A) Up and right
 If the instantaneous velocity of a car is zero (v = 0), can the acceleration of the car be non-zero?

 A) Up and right
 And the car be non-zero?

 B) Up and left
 And yes

 C) Down and left
 Bno

 D) Down and left
 C) depends on the velocity

ne ball will land
) Back in the cannon
In front of the cannon
Behind the cannon

Consider the velocities at t_1 and t_2 . These are the velocity vectors v_1 and v_2 . Draw a $\vec{v}_1 + \Delta \vec{v} = \vec{v}_2$ vector diagram! What is the direction of $\Delta \vec{v}$, the change in velocity between t_1 and t_2 ? A) Up \uparrow B) Down \downarrow C) Up and right \nearrow D) Down and right \bowtie E) None of these

A flaming physics text is dropped from an airplane flying at height h at constant horizontal velocity and speed v_0 . Neglecting air resistance, the text will...

D) it depends how fast the plane is flying.

A rifle is accurately aimed at a rabid monkey hanging from the branch of a tree. The instant the gun is fired, the monkey releases the branch and starts falling. The monkey is well within the range of the rifle. The initial speed of the bullet is v_0 . What happens?

- large enough to reach the air below the monkey).
- B) The bullet hits the monkey only if v_0 is large enough.
- C) The bullet misses!

True or false: If the speed of an object moving in 2-D is constant, its acceleration must be zero.
A) True B) False

A simple pendulum is swinging back and forth. What is the direction of the acceleration of the pendulum mass at the moment when it is at maximum displacement to the right?
A) Zero B D C E) None of these