CT1. Recall the Taylor Series expansion of a function $f(x)$:
$\mathrm{f}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}_{\mathrm{o}}\right)+\left.\frac{\mathrm{df}}{\mathrm{dx}}\right|_{\mathrm{x}_{0}} \cdot\left(\mathrm{x}-\mathrm{x}_{0}\right)+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} \mathrm{f}}{\mathrm{dx}^{2}}\right|_{\mathrm{x}_{0}} \cdot\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2}+\ldots$
Consider the function $f(x)=\cos (x)$. If $x_{0}=0$, will the Taylor Series expansion produce the correct value of $\cos (5 \pi)$? That is, is the following equation correct?
$\cos (5 \pi) \stackrel{? ?}{=} \cos (0)+\left.\frac{\mathrm{d} \cos (\mathrm{x})}{\mathrm{dx}}\right|_{0} \cdot(5 \pi)+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} \cos (\mathrm{x})}{\mathrm{dx}^{2}}\right|_{0} \cdot(5 \pi)^{2}+\ldots$

A) Yes, the series expansion will give the exact answer $\cos (5 \pi)=-1$.
B) No, the series will not produce an answer even close.
C) The series will produce an answer that is close, but not exactly equal to -1 .

CT2. The function $f(x)$ consists of a infinite series of semi-circles each of radius R , as shown.

If $x_{0}=0$, will the Taylor Series expansion produce the correct value of $\mathrm{f}(\mathrm{x}=10 \mathrm{R})=-\mathrm{R}$?
A) Yes, the series expansion will yield $f=-R$, exactly.
B) No, the series will not produce an answer even close.
C) The series will produce an answer that is close, but not exactly equal to $\mathrm{f}=-\mathrm{R}$.

CT3. Consider the function $f(x)$ which is a quarter-circle joining two straight lines, as shown. Near $x=0$, the function has the form
$f(x)= \begin{cases}R, & x<0 \\ \sqrt{R^{2}-x^{2}}, & x>0\end{cases}$

Is there a discontinuity in $f(x)$ or any of its derivatives at $x=0$?
A) $f(x)$ is discontinuous at $x=0$.
B) $f(x)$ is continuous, but $d f / d x$ is discontinuous at $x=0$.
C) $f(x)$ and $d f / d x$ are continuous, but $d^{2} f / d x^{2}$ is discontinuous at $x=0$.
D) $f(x)$, df/dx, and $d^{2} f / d x^{2}$ are all continuous, but $d^{3} f / d x^{3}$ is discontinuous at $\mathrm{x}=0$.
E) $f(x)$ and all its higher derivatives are continuous at $x=0$.

CT4. An object has velocity $\overrightarrow{\mathrm{v}_{1}}$ at an earlier time and velocity $\overrightarrow{\mathrm{v}_{2}}$ at a later time, as shown. What is the direction of $\overrightarrow{\Delta \mathrm{v}}=\overrightarrow{\mathrm{v}_{2}}-\overrightarrow{\mathrm{v}_{1}}$?

direction of $\Delta \mathbf{v}$?

E) None of these

CT5. A rock is twirled on a string at constant speed by an astronaut in inter-galactic space (where gravitational effects are negligible). At the moment shown, what is the direction of the acceleration a of the rock?

direction of \mathbf{a} ?

E) None of these

CT6. Near the surface of the earth, a rock is twirled on a string in a vertical plane at constant speed. At the moment shown, what is the direction of the acceleration \mathbf{a} of the rock?

direction of \mathbf{a} ?

E) None of these

CT7.If we use spherical coordinates (r, θ, ϕ) to integrate over the volume of a sphere of radius R , centered on the origin, what are the correct limits of integration?

A) $\mathrm{r}=0$ to $\mathrm{R}, \quad \theta=0$ to $\pi, \quad \phi=0$ to 2π
B) $r=-R$ to $R, \quad \theta=0$ to $2 \pi, \quad \phi=0$ to π
C) $\mathrm{r}=0$ to $\mathrm{R}, \quad \theta=0$ to $2 \pi, \quad \phi=0$ to π
D) $\mathrm{r}=-\mathrm{R}$ to $\mathrm{R}, \quad \theta=0$ to $2 \pi, \quad \phi=0$ to 2π

CT8.For which of the following integrals can we usefully apply integration by parts?

$$
\text { 1. } \int d x \frac{\ln x}{x^{2}} \text { 2. } \int d x x e^{x^{2}} \text { 3. } \int d x x^{2} e^{2 x}
$$

A) 1 and 2
B) 2 and 3
C) 1 and 3
D) 1,2 , and 3
E) None of the integrals can be integrated by parts.

CT9. Consider the equation $\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{kv}$, where v is the velocity, t is the time, and k is a constant. This equation describes the motion of A) a mass on a spring
B) a mass in free-fall (no air resistance)
C) a moving mass experiencing a drag force
D) a moving mass with no net force
E) a mass moving in a circle at constant speed

CT10. Consider a mass falling under the influence of gravity while experiencing a drag force that is proportional to the square of its velocity. (Down corresponds to increasing position and velocity.) What is the equation describing the motion of the mass?
A) $\frac{d v}{d t}=-g+k v$
B) $\frac{d x}{d t}=g-k x^{2}$
C) $\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{g}-\mathrm{kv} \mathrm{v}^{2}$
D) $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{g}-\mathrm{kx}$
E) $\frac{\mathrm{dv}}{\mathrm{dt}}=m g-\mathrm{v}^{2}$

CT11. We found that the solution to the equation describing a mass moving with a drag force

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{kv} ; \quad \mathrm{v}(\mathrm{t}=0)=\mathrm{v}_{\mathrm{o}}>0
$$

is given by

$$
v(t)=v_{o} e^{-k t}
$$

Which of these figures shows the velocity of the mass as a function of time?
A)

B)

C)

D

CT12. We found that the solution to the equation for a mass falling under the influence of gravity, but with a drag force

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{g}-\mathrm{kv} ; \quad \mathrm{v}(\mathrm{t}=0)=\mathrm{v}_{\mathrm{o}}>0, \mathrm{z}(\mathrm{t}=0)=\mathrm{h}>0
$$

is given by

$$
\mathrm{v}(\mathrm{t})=\frac{-\mathrm{g}}{\mathrm{k}}+\left(\frac{\mathrm{kv}_{\mathrm{o}}+\mathrm{g}}{\mathrm{k}}\right) \mathrm{e}^{-\mathrm{kt}}
$$

Which of these figures shows the height of the mass as a function of time?
A)

B

C)

D)

