CT14-1. Which of these problems could be solved using the calculus of variations?

- 1. Find the period of small oscillations for a particle sliding (without friction) on the inside of a sphere.
- 2. Find the surface with fixed area that encloses the maximum volume.
- 3. Find the path between two points that minimizes the time for a particle to slide (without friction) between the points.
- 4. Find the path of a projectile (with no air resistance) that leads to the maximum range.
- A) NoneB) Only oneD) Exactly threeE) All four

C) Exactly two

CT14-2. Which of these paths could be a solution to the brachistochrone problem?

CT14-3. If the particle starts from rest at x=y=0 and slides under the gravitational force (without friction), what is the relationship between x, y, and the speed of the particle?

A)
$$\frac{1}{2}$$
mv² - mgy = const.
C) $\frac{1}{2}$ mv² - mgx = const.

CT14-4. Which of these problems could be solved using the calculus of variations with constraints?

- 1. Find the shortest path between two points on the surface of a cylinder.
- 2. Find the surface with fixed area that encloses the maximum volume.
- 3. Find the path between two points that minimizes the time for a particle to slide (without friction) between the points.
- 4. Find the path between two points that minimizes the area of the surface of revolution (formed by rotating the path around an axis).
- A) NoneB) Only oneD) Exactly threeE) All four

C) Exactly two

CT14-5. To solve Dido's problem, what is the function that must be maximized?

A)
$$J[y] = \int_{-a}^{a} \left(y + \lambda \sqrt{1 + {y'}^2} \right) dx$$

B)
$$J[y] = \int_{-a}^{a} \left(y + \lambda {y'}^2 \right) dx$$

C)
$$J[y] = \int_{-a}^{a} \left(y^2 + \lambda \left[1 + {y'}^2 \right] \right) dx$$

D)
$$J[y] = \int_{-a}^{a} \left(\sqrt{1+{y'}^2} + \lambda y\right) dx$$

CT14-6. What is the Lagrangian of a particle (mass m) attached to a spring (spring constant k)?

A) $\mathcal{L}(x, \dot{x}, t) = \frac{1}{2}k\dot{x}^2 - \frac{1}{2}mx^2$ B) $\mathcal{L}(x, \dot{x}, t) = m\dot{x}^2 - kx^2$ D) $\mathcal{L}(x, \dot{x}, t) = m\dot{x}^2 + kx^2$

CT14-8. Which of these constraints is holonomic?

- 1. A particle is constrained to slide on the inside of a sphere.
- 2. A cylinder rolls down an inclined plane.
- 3. Two moving particles are connected by a rod of length l.
- 4. A moving car is constrained to obey the speed limit.

A) None	B) Only one
D) Exactly three	E) All four

C) Exactly two

CT14-9. For which of these systems could you use Lagange's equations of motion?

- 1. A double pendulum: a pendulum (mass m, length l) has a second pendulum (mass m, length l) connected to its bob.
- 2. A projectile moves in two dimensions with gravity and air resistance.
- 3. A bead slides without friction on a circular, rotating wire.
- A) 1 only

D) 1 and 2

B) 2 only E) 1 and 3 C) 3 only

CT14-10. What would be a good choice of generalized coordinates for the double pendulum? (Assume the pendula are constrained to move in the x-y plane.)

- A) the Cartesian coordinates of the bob positions: x₁, y₁ (first bob) and x₂, y₂ (second bob)
- B) the Cartesian coordinates of the first bob: x_1 , y_1 and the Cartesian coordinates of the second bob, treating the first bob as the origin: x'_2 , y'_2
- C) the angles made between each pendulum rod and the vertical: θ_1 , (first bob) θ_2 (second bob)
- D) the angles made between a line drawn from each pendulum bob to the pivot and the vertical: α_1 , (first bob) α_2 (second bob)