CT15-1. A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . What is the kinetic energy of the bead?

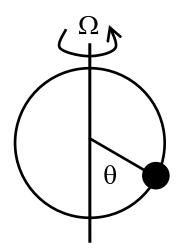
A)
$$T = \frac{1}{2}mR^2\dot{\theta}^2 + \frac{1}{2}mR^2\Omega^2$$

B)
$$T = \frac{1}{2} mR^2 \dot{\theta}^2 + \frac{1}{2} mR^2 \cos^2 \theta \Omega^2$$

C)
$$T = \frac{1}{2} mR^2 \dot{\theta}^2 + \frac{1}{2} mR^2 \sin^2 \theta \Omega^2$$

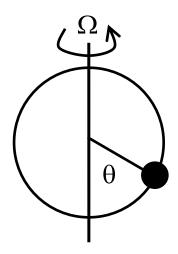
D)
$$T = \frac{1}{2} mR^2 \dot{\theta}^2 - \frac{1}{2} mR^2 \Omega^2$$

E)
$$T = \frac{1}{2} mR^2 (\dot{\theta} + \Omega \sin \theta)^2$$

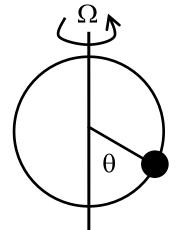


CT15-2. A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . When the bead is at angle θ , how high is the bead above the lowest point of the wire?

- A) $h = R\cos\theta$
- B) $h = R\sin\theta$
- C) $h = R(\sin\theta \cos\theta)$
- D) $h = R(1 \sin\theta)$
- E) $h = R(1 \cos\theta)$



CT15-3. A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . When the bead is at angle θ , what is the θ component of the centripetal force on the bead?



A)
$$F_{c\theta} = mR^2\Omega^2 \cos\theta$$

B)
$$F_{c\theta} = mR^2 \sin\theta$$

C)
$$F_{c\theta} = mR^2\Omega^2 \sin\theta$$

D)
$$F_{c\theta} = mR^2 \Omega^2 \sin\theta \cos\theta$$

E)
$$F_{c\theta} = mR^2 \sin\theta \cos\theta$$

CT15-4. A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . The equation of motion of the bead is

$$\ddot{\theta} + \frac{g}{R}\sin\theta - \Omega^2\sin\theta\cos\theta = 0$$

What are the equilibrium value(s) of θ ?

A)
$$\theta = 0$$

B)
$$\theta = \cos^{-1}\left(\frac{g}{R\Omega^2}\right)$$

C)
$$\theta = \sin^{-1}\left(\frac{g}{R\Omega^2}\right)$$

D)
$$\theta = 0$$
 and $\theta = \cos^{-1} \left(\frac{g}{R\Omega^2} \right)$

$$\theta$$

CT15-5. A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . The equation of motion for small

motions about the equilibrium $\theta_0 = \cos^{-1}\left(\frac{g}{R\Omega^2}\right)$ is

$$\delta\ddot{\theta} + \Omega^2 \sin^2\theta_0 \,\delta\theta = 0$$

What is the oscillation frequency of the bead?

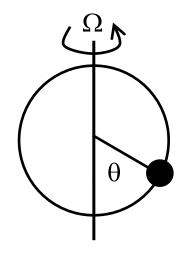
A)
$$\omega = \Omega$$

B)
$$\omega = \Omega^2$$

C)
$$\omega = \Omega \sin \theta_0$$

D)
$$\omega = \Omega^2 \sin^2 \theta_0$$

E)
$$\omega = \Omega \sin\theta$$



CT15-6. A block of mass m_1 slides on an inclined plane of mass m_2 . The Lagrangian of the system is

$$\mathcal{L}(x,\dot{x},y,\dot{y}) = \frac{1}{2}m_1(\dot{y}\cos\theta - \dot{x})^2 + \frac{1}{2}m_1\dot{y}^2\sin^2\theta + \frac{1}{2}m_2\dot{x}^2 + m_1gy\sin\theta$$

What is the Lagrangian equation of motion for the variable x?

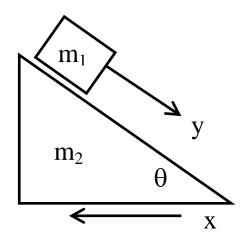
A)
$$m_1 \ddot{x} = 0$$

B)
$$(m_1 + m_2)\ddot{x} = 0$$

C)
$$m_2\ddot{x} - m_1 \cos\theta \ddot{y} = 0$$

D)
$$\ddot{x} - \cos\theta \ddot{y} = 0$$

E)
$$(m_1 + m_2)\ddot{x} - m_1 \cos\theta \ddot{y} = 0$$



CT15-7. A block of mass m_1 slides on an inclined plane of mass m_2 . The equations of motion are

$$\ddot{x} = \frac{m_1}{m_1 \sin^2 \theta + m_2} g \sin \theta \cos \theta$$

$$\ddot{y} = \frac{m_1 + m_2}{m_1 \sin^2 \theta + m_2} g \sin \theta$$

What is a good approximation to these equations in the limit of a very heavy plane?

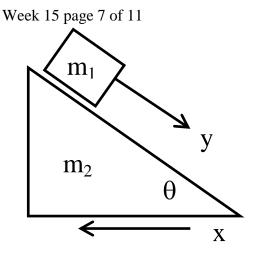
A)
$$\ddot{x} = 0$$
 $\ddot{y} = g \sin\theta$

B)
$$\ddot{x} = \frac{m_1}{m_2} g \sin\theta \cos\theta$$
 $\ddot{y} = \frac{m_1 + m_2}{m_2} g \sin\theta$

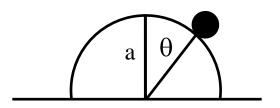
C)
$$\ddot{x} = g \sin\theta \cos\theta$$
 $\ddot{y} = g \sin\theta$

D)
$$\ddot{x} = g \frac{\cos \theta}{\sin \theta}$$
 $\ddot{y} = g \frac{1}{\sin \theta}$

E)
$$\ddot{x} = g \frac{\cos \theta}{\sin \theta}$$
 $\ddot{y} = g$



CT15-8. A particle of mass m slides on the outside of a cylinder of radius a. A good choice of generalized coordinates is (r, θ) What are the kinetic and potential energy of the particle?



A)
$$T = \frac{1}{2}mr^{2}\dot{\theta}^{2}$$
$$U = mgr \cos\theta$$

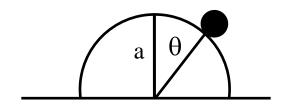
$$T = \frac{1}{2}mr^2\dot{\theta}^2$$
B)
$$U = mgr \sin\theta$$

D)
$$T = \frac{1}{2}m(\dot{r}^2 + \dot{\theta}^2)$$
$$U = mgr \cos\theta$$

C)
$$T = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2)$$
$$U = mgr \sin\theta$$

E)
$$T = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2)$$
$$U = mgr \cos\theta$$

CT15-9. A particle of mass m slides on the outside of a cylinder of radius a. What condition must be satisfied by the force of constraint at the point (angle θ_0) where the particle leaves the cylinder?

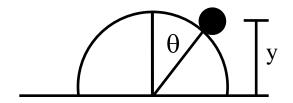


A) $Q_r = mg$

- B) $Q_r = -mg$
- C) $Q_r = mg \sin\theta$
- D) $Q_r = mg \cos\theta$

E) $Q_r = 0$

CT15-10. A particle of mass m slides on the outside of a cylinder of radius a. The particle leaves the cylinder at angle θ_0 and speed v, where



$$\cos \theta_0 = \frac{2}{3}$$
$$v = \sqrt{\frac{2ag}{3}}$$

Once the particle leaves the cylinder, what is its height y(t) above the ground?

A)
$$y = a - v \sin\theta_0 t - \frac{1}{2}gt^2$$
 B) $y = a + v \sin\theta_0 t - \frac{1}{2}gt^2$

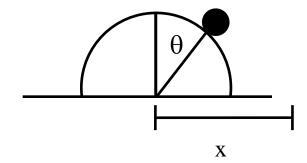
B)
$$y = a + v \sin \theta_0 t - \frac{1}{2}gt^2$$

C)
$$y = \frac{2a}{3} - v \sin\theta_0 t - \frac{1}{2}gt^2$$

C)
$$y = \frac{2a}{3} - v \sin\theta_0 t - \frac{1}{2}gt^2$$
 D) $y = \frac{2a}{3} + v \sin\theta_0 t - \frac{1}{2}gt^2$

E)
$$y = \frac{2a}{3} - v \sin\theta_0 t - gt^2$$

CT15-11. A particle of mass m slides on the outside of a cylinder of radius a. The particle leaves the cylinder at angle θ_0 and speed v, where



$$\cos \theta_0 = \frac{2}{3}$$
$$v = \sqrt{\frac{2ag}{3}}$$

The particle then flies through the air for time

$$t_{f} = v \sin \theta_{0} \left(\sqrt{1 + \frac{4ag}{3v^{2} \sin^{2} \theta_{0}}} - 1 \right)$$

How far from the center of the cylinder does the particle land?

A)
$$x = vt_f \cos\theta_0 + a \sin\theta_0$$
 B) $x = (vt_f + a) \sin\theta_0$

B)
$$x = (vt_f + a) \sin\theta_0$$

C)
$$x = vt_f \sin\theta_0 + a\cos\theta_0$$
 D) $x = (vt_f + a)\cos\theta_0$

D)
$$x = (vt_f + a) cos\theta_0$$

E)
$$x = vt_f - a \sin \theta_0$$