CT6-1. Consider:
$\exp [i \alpha] \cdot \exp [i \beta]=\exp [i(\alpha+\beta)] \quad$ where α, β real which implies:
$[\cos \alpha+i \sin \alpha] \cdot[\cos \beta+i \sin \beta]=\cos (\alpha+\beta)+i \sin (\alpha+\beta)$

Which of the following trig identities is correct?
A) $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
B) $\cos (\alpha+\beta)=\cos \alpha \sin \beta+\sin \alpha \cos \beta$
C) $\cos (\alpha+\beta)=\cos ^{2} \alpha-\sin ^{2} \beta$
D) $\sin (\alpha+\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
E) $\sin (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$

CT6-2.
Consider the function $\mathrm{f}(\mathrm{t})=\mathrm{A} \sin (2 \pi \mathrm{t} / \mathrm{T})$
How many of the following statements are correct?
I. $\int_{-0.5 \mathrm{~T}} \mathrm{f}(\mathrm{t}) \mathrm{dt}=0$
$+0.75 \mathrm{~T}$
II. $\int_{-0.75 \mathrm{~T}} \mathrm{f}(\mathrm{t}) \mathrm{dt}=0$
III. $\int_{0}^{+\mathrm{T}} \mathrm{f}(\mathrm{t}) \mathrm{dt}=0 \quad$ IV. $\int_{0}^{+1.5 \mathrm{~T}} \mathrm{f}(\mathrm{t}) \mathrm{dt}=0$

A) All are true
B) Exactly 1 is true
C) Exactly 2 are true
D) Exactly 3 are true
E) Answer depends on the period T

CT6-3. Consider the following two square wave functions f_{1} and f_{2}

Notice that the period T of f_{1} is twice the period of f_{2}. What can you say about the value of the integral $\int_{0}^{\mathrm{T}} \mathrm{f}_{1}(\mathrm{t}) \cdot \mathrm{f}_{2}(\mathrm{t}) \mathrm{dt}$?
A) The integral is positive.
B) It is negative.
C) The integral is zero.
D) The value depends on the period T.
E) Answer depends on the period T

CT6-4. Match the plot on the right (a periodic function of time) to the correct plot below of the Fourier coefficients. In other words, $\mathrm{x}(\mathrm{t})=\mathrm{b}_{1} \sin (\mathrm{t})+\mathrm{b}_{2} \sin (2 \mathrm{t})+\mathrm{b}_{3} \sin (3 \mathrm{t})+\ldots$ Pick the plot below that shows the correct first few Fourier coefficients b_{n}.

A)

C)

B)

D)

CT6-5. Match the plot on the right (a periodic function of time) to the correct plot below of the Fourier coefficients. In other words, $x(t)=b_{1} \sin (t)+b_{2} \sin (2 t)+b_{3} \sin (3 t)+\ldots$ Pick the plot below that shows the correct first few Fourier coefficients b_{n}.

C)

B)

D)

CT6-6. Match the plot on the right (a periodic function of time) to the correct plot below of the Fourier coefficients. In other words, $x(t)=b_{1} \sin (t)+b_{2} \sin (2 t)+b_{3} \sin (3 t)+\ldots$ Pick the plot below that shows the correct first few Fourier coefficients b_{n}.

C)

B)

D)

CT6-7. Match the plot on the right (a periodic function of time) to the correct plot below of the Fourier coefficients. In other words, $x(t)=b_{1} \sin (t)+b_{2} \sin (2 t)+b_{3} \sin (3 t)+\ldots$ Pick the plot below that shows the correct first few Fourier coefficients b_{n}.

C)

B)

D)

CT6-8. Which plot of a periodic function of time (1 or 2) is correctly represented by the shown Fourier series coefficients (a or b)?

(1)

(a)

(2)

(b)

A) 1 is (a), 2 is (b)
B) 1 is (b), 2 is (a)

CT6-9. What is the approximate Q of the oscillator?
A) 10^{-6}
B) 10^{-2}
C) 1
D) 10^{2}
E) 10^{6}

CT6-10. Superposition (still under construction)

