CT-1. Which of these operators is a linear operator?
I. $\mathrm{L}(\mathrm{x})=\mathrm{x}^{2} \quad$ II. $\mathrm{L}(\mathrm{x})=\mathrm{A} \cdot \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}$
III. $\mathrm{L}(\mathrm{x})=\sin (\mathrm{x}) \quad$ IV. $\mathrm{L}(\mathrm{x})=\mathrm{A} \cdot \mathrm{x}+\mathrm{B}$
V. $L(x)=\exp (x)=e^{x}$
A) 1 of these
B) $\mathbf{2}$ of these
C) 3
D) 4
E) All 5 of these

CT-2.What is the shape of the function

$$
\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right)^{2}+\mathrm{C}^{2}}}, \quad \mathrm{C}>0
$$

CT-3. Consider the function $f(t)=A \exp \left(-i 2 \pi n \frac{t}{T}\right), n \neq 0$
What can you say about the these 4 integrals?
I. $\int_{-T / 2}^{+T / 2} f(t) d t$
II. $\int_{0}^{+T} f(t) d t$
III. $\int_{1.5 \mathrm{~T}}^{2.5 \mathrm{~T}} \mathrm{f}(\mathrm{t}) \mathrm{dt}$
IV. $\int_{511 T}^{512 T} f(t) d t$
A) All are real and non-zero
B) All are zero
C) All are pure imaginary and non-zero
D) All are non-zero. Some are real, some are imaginary.
E) Some are real, some are imaginary, at least one is zero.

CT-4. Match the function $f(t)$ to the magnitude of it Fourier Transform $|g(\omega)|$:

(I) has transform (A) or (B)?
(III) has transform (C) or (D)?

