CT9-1. Match the function f(t) to the magnitude of it Fourier Transform $|g(\omega)|$:

2/25/2011

CT9-2. Given that the Fourier Transform of the function f(t) is $g(\omega)$, we derived that the Fourier Transform of the time derivative f'(t) is $i\omega g(\omega)$. In other words, $FT[f(t)] = g(\omega)$ and $FT[f'(t)] = i\omega g(\omega)$. What is the Fourier Transform of the second time derivative f''(t)?

A) $FT[f''(t)] = i\omega^2 g(\omega)$ B) $FT[f''(t)] = i\omega g(\omega)$ C) $FT[f''(t)] = -\omega g(\omega)$ D) $FT[f''(t)] = \omega^2 g(\omega)$ E) $FT[f''(t)] = -\omega^2 g(\omega)$ CT9-3. Given that the Fourier Transform of the function x(t) is $g(\omega)$, we derived that the Fourier Transform of the time derivative x'(t) is $i\omega g(\omega)$. In other words, $FT[x(t)] = g(\omega)$ and $FT[x'(t)] = i\omega g(\omega)$. What is the Fourier Transform of the following differential equation?

 $\mathbf{x}^{\prime\prime} + \mathbf{b} \ \mathbf{x}^{\prime} + \mathbf{c} \ \mathbf{x} = \mathbf{0}$

Assume b and c are positive constants.

A) $[\omega^2 - ib\omega + c] g(\omega) = 0$ B) $[-\omega^2 + ib\omega - c] g(\omega) = 0$ C) $[-\omega^2 + ib\omega + c] g(\omega) = 0$ D) $[ib\omega^2 - \omega + c] g(\omega) = 0$ E) $[-\omega^2 + ib\omega + c] g(\omega) = 0$ CT9-4. Review of phase diagrams. A driven, damped pendulum (DDP) has a phase diagram (or state space diagram) which is a plot of $d\theta/dt$ vs θ . Which of the following trajectory portions are physically allowed in the phase diagram of a DDP?

A) All

B) None C) I, II only

D) I, III only

E) I, III, IV only