CT9-1. Match the function $f(t)$ to the magnitude of it Fourier Transform $|g(\omega)|$:

CT9-2. Given that the Fourier Transform of the function $f(t)$ is $g(\omega)$, we derived that the Fourier Transform of the time derivative $f^{\prime}(t)$ is $i \omega g(\omega)$. In other words, $\operatorname{FT}[f(t)]=g(\omega)$ and $F T\left[f^{\prime}(t)\right]=i \omega g(\omega)$. What is the Fourier Transform of the second time derivative $\mathrm{f}^{\prime \prime}(\mathrm{t})$?
A) $\operatorname{FT}\left[f^{\prime \prime}(t)\right]=i \omega^{2} g(\omega)$
B) $\mathrm{FT}\left[\mathrm{f}^{\prime \prime}(\mathrm{t})\right]=\mathrm{i} \omega \mathrm{g}(\omega)$
C) $\operatorname{FT}\left[f^{\prime \prime}(\mathrm{t})\right]=-\omega \mathrm{g}(\omega)$
D) $\operatorname{FT}\left[f^{\prime \prime}(t)\right]=\omega^{2} g(\omega)$
E) $\operatorname{FT}\left[f^{\prime \prime}(t)\right]=-\omega^{2} g(\omega)$

CT9-3. Given that the Fourier Transform of the function $x(t)$ is $g(\omega)$, we derived that the Fourier Transform of the time derivative $x^{\prime}(t)$ is i $\omega g(\omega)$. In other words, $\mathrm{FT}[\mathrm{x}(\mathrm{t})]=\mathrm{g}(\omega)$ and $\mathrm{FT}\left[\mathrm{x}^{\prime}(\mathrm{t})\right]=\mathrm{i} \omega \mathrm{g}(\omega)$. What is the Fourier Transform of the following differential equation?

$$
x^{\prime \prime}+b x^{\prime}+c x=0
$$

Assume b and c are positive constants.
A) $\left[\omega^{2}-\mathrm{ib} \omega+\mathrm{c}\right] \mathrm{g}(\omega)=0$
B) $\left[-\omega^{2}+i b \omega-c\right] g(\omega)=0$
C) $\left[-\omega^{2}+i b \omega+c\right] g(\omega)=0$
D) $\left[i b \omega^{2}-\omega+c\right] g(\omega)=0$
E) $\left[-\omega^{2}+i b \omega+c\right] g(\omega)=0$

CT9-4. Review of phase diagrams. A driven, damped pendulum (DDP) has a phase diagram (or state space diagram) which is a plot of $d \theta / \mathrm{dt}$ vs θ. Which of the following trajectory portions are physically allowed in the phase diagram of a DDP?

A) All
B) None
C) I, II only
D) I, III only
E) I, III, IV only

