Physics 3210

Week 10 clicker questions

Consider a Foucault pendulum in the northern hemisphere. We derived the motion of the pendulum in the absence of rotation as x'(t), y'(t). When rotation of the earth is included, we find

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} \cos\Omega_z t & \sin\Omega_z t \\ -\sin\Omega_z t & \cos\Omega_z t \end{bmatrix} \begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix}$$

What is the effect of multiplying by the matrix?

- A. The x', y' solution is reflected about a timedependent axis.
- B. The x', y' solution is reflected about a fixed axis.
- C. The x', y' solutions is rotated through a fixed angle.
- D. The x', y' solution is rotated through a timedependent angle.

Consider a Foucault pendulum in the northern hemisphere. We derived the motion of the pendulum in the absence of rotation as x'(t), y'(t). When rotation of the earth is included, we find

$$\begin{bmatrix} \mathbf{x}(t) \\ \mathbf{y}(t) \end{bmatrix} = \begin{bmatrix} \cos\Omega_z t & \sin\Omega_z t \\ -\sin\Omega_z t & \cos\Omega_z t \end{bmatrix} \begin{bmatrix} \mathbf{x}'(t) \\ \mathbf{y}'(t) \end{bmatrix}$$

What is precession frequency of the pendulum?

Α. Ω

B. $\Omega sin\lambda$

- C. $\Omega \cos \lambda$
- D. None of the above.

Consider a Foucault pendulum in the northern hemisphere. Where does the pendulum precess most rapidly?

A. At the equator.B. At 30 degrees N latitude.C. At 45 degrees N latitude.D. At 60 degrees N latitude.E. At the north pole.

What is the net force on the cylinder (in the y direction)?

A. F = Mg

B.
$$F = -T$$

C. F = Mg - T

D. F = T - Mg

What are the sources of torque about the central axis of the cylinder?

- A. Gravity.
- B. Tension in the string.
- C. Both gravity and tension in the string.
- D. Neither gravity nor tension in the string.

What is the correct equation of motion for rotation about the central axis of the cylinder?

A.
$$I\ddot{\theta} = T$$

- B. $I\ddot{\theta} = -T$
- C. $I\ddot{\theta} = RT$

D. $I\ddot{\theta} = -RT$

What is the tension in the string?

A.
$$T = \frac{1}{3}Mg$$

B.
$$T = \frac{2}{3}Mg$$

C.
$$T = Mg$$

D.
$$T = \frac{4}{3}Mg$$

What is the angular velocity about the central axis of the cylinder?

A.
$$\dot{\theta} = \frac{gt}{3}$$

B. $\dot{\theta} = \frac{2gt}{3}$
C. $\dot{\theta} = \frac{gt}{3R}$
D. $\dot{\theta} = \frac{2gt}{3R}$

Physics 3210

Wednesday clicker questions

A system of n particles is described by the masses and positions of each particle, relative to the center of mass: m_{α} , \mathbf{r}_{α}

What can you say about the quantity $\sum m_{\alpha} \mathbf{r}_{\alpha}$?

A.
$$\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} = 0$$

B.
$$\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} > 0$$

C.
$$\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} < 0$$

D.
$$\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} =$$
 the position of the CM

A top spins about its own symmetry axis (angular velocity ω) and precesses about the vertical (angular velocity Ω).

How does the precession rate depend on the rotation rate?

- A. Ω increases as ω increases.
- B. Ω is independent of ω .
- C. Ω decreases as ω increases.
- D. It depends on the angle.

Physics 3210

Friday clicker questions

A rotating dumbbell consists of two masses (mass m) which move in circles (radius a) at z displacement ℓ and $-\ell$, joined by a massless rod. The angular velocity vector $\mathbf{\omega} = \omega \hat{\mathbf{z}}$

What is the direction of the angular momentum vector **L**?

A rotating dumbbell consists of two masses (mass m) which move in circles (radius a) at z displacement ℓ and $-\ell$, joined by a massless rod. The angular velocity vector $\mathbf{\omega} = \omega \hat{\mathbf{z}}$

Consider the body frame where the positions of the masses are $(0,a,\ell)$ and $(0,-a,-\ell)$. What is the I₃₃ component of the inertia tensor?

A.
$$I_{33} = \frac{1}{2}ma^2$$

B. $I_{33} = ma^2$
C. $I_{33} = 2ma^2$
D. $I_{33} = m\ell^2$
E. $I_{33} = 2m\ell^2$

A rotating dumbbell consists of two masses (mass m) which move in circles (radius a) at z displacement ℓ and $-\ell$, joined by a massless rod. The angular velocity vector $\mathbf{\omega} = \omega \hat{\mathbf{z}}$

Consider the body frame where the positions of the masses are $(0,a,\ell)$ and $(0,-a,-\ell)$. What is the I₁₃ component of the inertia tensor?

A.
$$I_{13} = 2ma\ell$$
 D. $I_{13} = -ma\ell$

B. $I_{13} = ma\ell$ E. $I_{13} = 0$

C. $I_{13} = -2ma\ell$

A rotating dumbbell consists of two masses (mass m) which move in circles (radius a) at z displacement ℓ and $-\ell$, joined by a massless rod. The angular velocity vector $\mathbf{\omega} = \omega \hat{\mathbf{z}}$

Consider the body frame where the positions of the masses are $(0,a,\ell)$ and $(0,-a,-\ell)$. What is the I₂₃ component of the inertia tensor?

A.
$$I_{23} = 2ma\ell$$
 D. $I_{23} = -ma\ell$

B. $I_{23} = ma\ell$ E. $I_{23} = 0$

C. $I_{23} = -2ma\ell$

A rotating dumbbell consists of two masses (mass m) which move in circles (radius a) at z displacement ℓ and $-\ell$, joined by a massless rod. The angular velocity vector $\mathbf{\omega} = \omega \hat{\mathbf{z}}$

What is the kinetic energy of the system?

A.
$$T = 2ma^2\omega^2$$
 D. $T = -2ma^2\omega^2$
B. $T = ma^2\omega^2$ E. $T = 0$
C. $T = \frac{1}{2}ma^2\omega^2$

The inertia tensor is a 3-by-3 matrix with real positive eigenvalues and orthogonal eigenvectors.

As a result, how many of the following statements are true?

- 1. The matrix can be diagonalized.
- 2. The matrix of eigenvectors is an orthogonal matrix.
- 3. The matrix of eigenvectors is a rotation matrix (if properly normalized).
- 4. In the coordinate system aligned with the eigenvectors, the inertia tensor is diagonal.
- A. None are true.
- B. Exactly one is true.
- C. Exactly two are true.
- D. Exactly three are true.
- E. All four are true.