Physics 3210

Week 12 clicker questions

If **v** is a vector in one frame and **v'** is the same vector in a rotated frame, we showed that $\mathbf{v'}=A\mathbf{v}$, where A is a rotation matrix (the matrix of direction cosines). This determines $\mathbf{v'}$ given A and \mathbf{v} .

If instead we know **v'** and A, how can we find **v**?

- A. v = Av'
- B. $\mathbf{v} = \mathbf{A}^{\mathrm{T}} \mathbf{v'}$
- C. $\mathbf{v}=\mathbf{A}^{2}\mathbf{v'}$
- D. We can't determine **v** without first determining a different rotation matrix.

For a rotation matrix, $A^{T}A=I$.

What does this imply about the determinant of A?

A. det A = 1
B. det A = -1
C. det A = 1 or -1
D. det A = 0
E. None of the above.

Which of the following is the correct matrix for a rotation about the x axis?

A.
$$A_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sin\theta & \cos\theta \\ 0 & -\cos\theta & \sin\theta \end{bmatrix}$$
C.
$$A_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}$$
B.
$$A_{x} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
D.
$$A_{x} = \begin{bmatrix} \sin\theta & \cos\theta & 0 \\ -\cos\theta & \sin\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Suppose a book is rotated in two different ways: from the same starting orientation, the book is rotated by 90° clockwise (1) about the x axis, then about the y axis, then about the z axis, or

(2) about the y axis, then about the x axis, then about the z axis. Note: the axes are in the space frame.

How do the final orientations of the book compare?

- A. The orientations are the same.
- B. The orientations are different.

Using Euler angles, we wish to construct a rotation matrix that rotates first by angle φ about the z axis (matrix A_{φ}), then by angle θ about the x' axis (matrix A_{θ}), then by angle ψ about the z'' axis (matrix A_{ψ}). How should we multiply the three rotation matrices to get the final rotation matrix, $A(\varphi, \theta, \psi)$?

A. $A(\phi, \theta, \psi) = A_{\theta}A_{\psi}A_{\phi}$ B. $A(\phi, \theta, \psi) = A_{\phi}A_{\theta}A_{\psi}$ C. $A(\phi, \theta, \psi) = A_{\phi}A_{\psi}A_{\theta}$ D. $A(\phi, \theta, \psi) = A_{\psi}A_{\phi}A_{\theta}$ E. $A(\phi, \theta, \psi) = A_{\psi}A_{\theta}A_{\phi}$ Using Euler angles, we constructed a rotation matrix $A(\phi, \theta, \psi)$ that rotates first by angle ϕ about the z axis (matrix A_{ϕ}), then by angle θ about the x' axis (matrix A_{θ}), then by angle ψ about the z'' axis (matrix A_{ψ}). What is the matrix A^{-1} that reverses (or undoes) this series of rotations?

A. $A^{-1} = A(\phi, \theta, \psi)$ B. $A^{-1} = A^{T}(\phi, \theta, \psi)$ C. $A^{-1} = A(\theta, \phi, \psi)$ D. $A^{-1} = A^{T}(\theta, \phi, \psi)$ E. $A^{-1} = A(\psi, \phi, \theta)$

Physics 3210

Wednesday clicker questions

What is the relationship between the principle moments of inertia I_1 , I_2 , and I_3 for a <u>symmetric top</u>?

A. $I_1 = I_2 = I_3$

B. $I_1 \neq I_2 = I_3$

C. $I_1 \neq I_2 \neq I_3$

D. The answer depends on the choice

of axes.

For a symmetric top with $I_2=I_3$, we defined $\epsilon=(I_1-I_2)/I_2$. What is the sign of ϵ for an oblate object such as a coin?

Α. ε>0

B. ε=0

С. ε<0

D. The answer depends on the choice of

axes.

We showed that for force-free motion of a symmetric top, the angular momentum vector is given by

$$\mathbf{L} = (\mathbf{I}_1 - \mathbf{I}_2)\omega_1 \mathbf{e}_1 + \mathbf{I}_2 \boldsymbol{\omega}$$

What does this imply about the geometry of the three vectors?

- A. L, \mathbf{e}_1 , and $\boldsymbol{\omega}$ are orthogonal to each other.
- B. L and \mathbf{e}_1 are orthogonal to each other.
- C. L and $\boldsymbol{\omega}$ are orthogonal to each other.
- D. L, \mathbf{e}_1 , and $\boldsymbol{\omega}$ lie in the same plane.
- E. L, \mathbf{e}_1 , and $\boldsymbol{\omega}$ are parallel.

For force-free motion of a symmetric top in the body frame, ω precesses about the \mathbf{e}_1 axis with angular velocity Ω , and the angular momentum \mathbf{L} lies in the same plane as ω and \mathbf{e}_1 . What does this imply about the motion of the angular momentum vector \mathbf{L} in the body frame?

- A. L is constant.
- B. L precesses about the ω axis with angular velocity Ω .
- C. L precesses about the ω axis an angular velocity different from Ω .
- D. L precesses about the \mathbf{e}_1 axis with angular velocity $\mathbf{\Omega}$.
- E. L precesses about the \mathbf{e}_1 axis an angular velocity different from $\boldsymbol{\Omega}$.

For force-free motion of a symmetric top in the space frame, we showed that Т

$$\dot{\boldsymbol{\omega}} = \frac{\mathbf{L}}{\mathbf{I}_2} \times \boldsymbol{\omega}$$

What does this imply about the motion?

A. The vector $\boldsymbol{\omega}$ precesses about the **L** axis with angular velocity $\boldsymbol{\omega}_{\rm p} = \mathbf{L}/(2I_2)$ B. The vector $\boldsymbol{\omega}$ precesses about the L axis with angular velocity $\boldsymbol{\omega}_{\rm p} = \mathbf{L}/\mathbf{I}_2$ C. The vector **L** precesses about the $\boldsymbol{\omega}$ axis with angular velocity $\boldsymbol{\omega}_{\rm p} = \mathbf{L}/\mathbf{I}_2$ D. The vector L precesses about the $\boldsymbol{\omega}$ axis with angular velocity $\boldsymbol{\omega}_{\rm p} = \mathbf{L}/(2I_2)$ E. The vector $\boldsymbol{\omega}$ precesses about the \mathbf{e}_1 axis with angular velocity $\boldsymbol{\omega}_p = \mathbf{L}/\mathbf{I}_2$

Physics 3210

Friday clicker questions