Physics 3210

Week 2 clicker questions

What is the Lagrangian of a pendulum (mass m , length 1)? Assume the potential energy is zero when θ is
 zero.
A. $\mathcal{L}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} \mathrm{~m} \ell^{2} \dot{\theta}^{2}-\mathrm{mg} \ell(1-\cos \theta)$

$$
\text { D. } \mathcal{L}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} \mathrm{~m} \dot{\theta}^{2}-\mathrm{mg} \ell(1-\cos \theta)
$$

B. $\mathcal{L}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} \mathrm{~m} \ell^{2} \dot{\theta}^{2}+\mathrm{mg} \ell(1-\cos \theta)$
C. $\mathcal{L}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} \mathrm{~m} \dot{\theta}^{2}+\mathrm{mg} \ell(1-\cos \theta)$

For which of these systems could you use Lagange's equations of motion?

1. A double pendulum: a pendulum (mass m, length
l) has a second pendulum (mass m, length l) connected to its bob.
2. A projectile moves in two dimensions with gravity and air resistance.
3. A bead slides without friction on a circular, rotating wire.
A. 1 only
B. 2 only

C. 3 only
D. 1 and 2
E. 1 and 3

What would be a good choice of generalized coordinates for the double pendulum? (Assume the pendula are constrained to move in the $x-y$ plane.)
A. the Cartesian coordinates of the bob positions: x_{1}, y_{1} (first bob) and $\mathrm{x}_{2}, \mathrm{y}_{2}$ (second bob)
B. the Cartesian coordinates of the first bob: $\mathrm{x}_{1}, \mathrm{y}_{1}$ and the Cartesian coordinates of the second bob, treating the first bob as the origin: $\mathrm{x}^{\prime},{ }_{2} \mathrm{y}^{\prime}{ }_{2}$
C. the angles made between each pendulum rod and the vertical: θ_{1}, (first bob) θ_{2} (second bob)
D. the angles made between a line drawn from each pendulum bob to the pivot and the vertical: α_{1}, (first bob) α_{2} (second bob)

What is the kinetic energy of a particle sliding on the parabola $\mathrm{y}=\mathrm{x}^{2}$?

A. $T(x, \dot{x}, t)=\frac{1}{2} m \dot{x}^{2}$
B. $\mathrm{T}(\mathrm{x}, \dot{\mathrm{x}}, \mathrm{t})=\frac{1}{2} \mathrm{~m} \dot{\mathrm{x}}^{2}(1+\mathrm{x})$
C. $T(x, \dot{x}, t)=\frac{1}{2} m \dot{x}^{2}(1+4 x)$
D. $T(x, \dot{x}, t)=\frac{1}{2} m \dot{\mathrm{x}}^{2}\left(1+2 \mathrm{x}^{2}\right)$
E. $T(x, \dot{x}, t)=\frac{1}{2} m \dot{x}^{2}\left(1+4 x^{2}\right)$

What is the generalized force of a particle sliding on the parabola $y=x^{2}$?

A. $\quad-m g x$
D. $2 m x \dot{x}^{2}-m g x$
B. $-2 \operatorname{mgx}$
E. $4 m x^{2} \dot{\mathrm{x}}-2 m g x$
C. $4 m x \dot{x}^{2}-2 m g x$

A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω. What is the kinetic energy of the bead?
A. $\mathrm{T}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} \mathrm{mR}^{2} \dot{\theta}^{2}+\frac{1}{2} \mathrm{mR}^{2} \Omega^{2}$
B. $\mathrm{T}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} \mathrm{mR} \mathrm{R}^{2} \dot{\theta}^{2}+\frac{1}{2} m R^{2} \cos ^{2} \theta \Omega^{2}$
C. $\mathrm{T}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} \mathrm{mR} \mathrm{R}^{2} \dot{\theta}^{2}+\frac{1}{2} m R^{2} \sin ^{2} \theta \Omega^{2}$
D. $\mathrm{T}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} m R^{2} \dot{\theta}^{2}-\frac{1}{2} m R^{2} \Omega^{2}$
E. $\mathrm{T}(\theta, \dot{\theta}, \mathrm{t})=\frac{1}{2} \mathrm{mR}^{2}(\dot{\theta}+\Omega \cos \theta)^{2}$

A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω. When the bead is at angle θ, how high is the bead above the lowest point of the wire?
A. $\mathrm{h}=\mathrm{R} \cos \theta$

B. $\mathrm{h}=\mathrm{R} \sin \theta$
C. $\mathrm{h}=\mathrm{R}(\sin \theta-\cos \theta)$
D. $h=R(1-\sin \theta)$
E. $h=R(1-\cos \theta)$

A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω. The equation of motion of the bead is

$$
\ddot{\theta}+\frac{\mathrm{g}}{\mathrm{R}} \sin \theta-\Omega^{2} \sin \theta \cos \theta=0
$$

What are the equilibrium value(s) of θ ?
A. $\theta=0$

B. $\theta=\cos ^{-1}\left(\frac{\mathrm{~g}}{\mathrm{R} \Omega^{2}}\right)$
C. $\theta=\sin ^{-1}\left(\frac{\mathrm{~g}}{\mathrm{R} \Omega^{2}}\right)$
D. $\theta=0$ and $\theta=\cos ^{-1}\left(\frac{\mathrm{~g}}{\mathrm{R} \Omega^{2}}\right)$
E. $\theta=0$ and $\theta=\sin ^{-1}\left(\frac{\mathrm{~g}}{\mathrm{R} \Omega^{2}}\right)$

A bead of mass m slides on a circular wire of radius R . The wire rotates about a vertical axis with angular velocity Ω. The equation of motion for small motions about the equilibrium $\theta_{0}=\cos ^{-1}\left(\frac{\mathrm{~g}}{\mathrm{R} \Omega^{2}}\right)$

$$
\delta \ddot{\theta}+\Omega^{2} \sin ^{2} \theta_{0} \delta \theta=0
$$

What is the oscillation frequency of the bead?

A. $\omega=\Omega$
B. $\omega=\Omega \sin \theta$
C. $\omega=\Omega \sin \theta_{0}$
D. $\omega=\Omega^{2}$
E. $\omega=\Omega^{2} \sin ^{2} \theta_{0}$

Which of these constraints is holonomic?

1. A particle is constrained to slide on the inside of a sphere.
2. A disk rolls without slipping down an inclined plane (in one dimension).
3. A disk rolls without slipping on a table (in two dimensions).
4. A moving car is constrained to obey the speed limit.
A. None
B. Only one
C. Exactly two
D. Exactly three
E. All four

A particle of mass m slides on the outside of a cylinder of radius a. A good choice of generalized coordinates is (r, θ). What is
 the constraint equation?
A. $\mathrm{f}(\mathrm{r}, \theta)=\mathrm{r}$
B. $\mathrm{f}(\mathrm{r}, \theta)=\mathrm{a}$
C. $\mathrm{f}(\mathrm{r}, \theta)=\mathrm{r}+\mathrm{a}$
D. $\mathrm{f}(\mathrm{r}, \theta)=\mathrm{r}-\mathrm{a}$

A particle of mass m slides on the outside of a cylinder of radius a. What is the force of constraint (in the radial direction) when
 $\theta=0$?
A. $\mathrm{Q}_{\mathrm{r}}(\theta=0)=\mathrm{mg}$
B. $\mathrm{Q}_{\mathrm{r}}(\theta=0)=\mathrm{mg} / 2$
C. $\mathrm{Q}_{\mathrm{r}}(\theta=0)=0$
D. $\mathrm{Q}_{\mathrm{r}}(\theta=0)=-\mathrm{mg} / 2$
E. $\mathrm{Q}_{\mathrm{r}}(\theta=0)=-\mathrm{mg}$

A particle of mass m slides on the outside of a cylinder of radius a. What happens to the (magnitude of the) force of constraint
 as θ increases?
A. The constraint force increases.
B. The constraint force decreases.
C. The constraint force is constant.

A particle of mass m slides on the outside of a cylinder of radius a. What are the
 kinetic and potential energy of the particle?
A. $\begin{aligned} & \mathrm{T}=\frac{1}{2} \mathrm{mr}^{2} \dot{\theta}^{2} \\ & \mathrm{U}=\mathrm{mgr} \cos \theta\end{aligned}$
B. $\mathrm{T}=\frac{1}{2} \mathrm{mr}^{2} \dot{\theta}^{2}$
B.

$$
\mathrm{U}=\mathrm{mgr} \sin \theta
$$

$$
\mathrm{T}=\frac{1}{2} \mathrm{~m}\left(\dot{\mathrm{r}}^{2}+\dot{\theta}^{2}\right)
$$

C. $\mathrm{U}=\mathrm{mgr} \sin \theta$

$$
\text { D. } \begin{aligned}
& \mathrm{T}=\frac{1}{2} \mathrm{~m}\left(\dot{\mathrm{r}}^{2}+\mathrm{r}^{2} \dot{\theta}^{2}\right) \\
& \mathrm{U}=\mathrm{mgr} \sin \theta
\end{aligned}
$$

$$
\text { E. } \quad \mathrm{T}=\frac{1}{2} \mathrm{~m}\left(\dot{\mathrm{r}}^{2}+\mathrm{r}^{2} \dot{\theta}^{2}\right)
$$

$$
\mathrm{U}=\mathrm{mgr} \cos \theta
$$

A particle of mass m slides on the outside of a cylinder of radius a. What condition must be satisfied by the force of constraint at the point (angle θ_{0}) where the particle
 leaves the cylinder?
A. $\mathrm{Q}_{\mathrm{r}}=\mathrm{mg}$
B. $\mathrm{Q}_{\mathrm{r}}=\mathrm{mg} \sin \theta_{0}$
C. $\mathrm{Q}_{\mathrm{r}}=0$
D. $\mathrm{Q}_{\mathrm{r}}=-\mathrm{mg}$
E. $\mathrm{Q}_{\mathrm{r}}=-\mathrm{mg} \sin \theta_{0}$

