Physics 3210

Week 2 clicker questions

What is the Lagrangian of a pendulum (mass m, length l)? Assume the potential energy is zero when θ is zero.

A.
$$\mathcal{L}(\theta, \dot{\theta}, t) = \frac{1}{2}m\ell^{2}\dot{\theta}^{2} - mg\ell(1 - \cos\theta)$$

B. $\mathcal{L}(\theta, \dot{\theta}, t) = \frac{1}{2}m\ell^{2}\dot{\theta}^{2} + mg\ell(1 - \cos\theta)$
C. $\mathcal{L}(\theta, \dot{\theta}, t) = \frac{1}{2}m\dot{\theta}^{2} + mg\ell(1 - \cos\theta)$

For which of these systems could you use Lagange's equations of motion?

A double pendulum: a pendulum (mass m, length
 has a second pendulum (mass m, length l)
 connected to its bob.

2. A projectile moves in two dimensions with gravity and air resistance.

3. A bead slides without friction on a circular, rotating wire.

- A. 1 only
- B. 2 only
- C. 3 only
- D. 1 and 2

E. 1 and 3

What would be a good choice of generalized coordinates for the double pendulum? (Assume the pendula are constrained to move in the x-y plane.)

- A. the Cartesian coordinates of the bob positions: x_1 , y_1 (first bob) and x_2 , y_2 (second bob)
- B. the Cartesian coordinates of the first bob: x_1 , y_1 and the Cartesian coordinates of the second bob, treating the first bob as the origin: x'_2 , y'_2
- C. the angles made between each pendulum rod and the vertical: θ_1 , (first bob) θ_2 (second bob)
- D. the angles made between a line drawn from each pendulum bob to the pivot and the vertical: α_1 , (first bob) α_2 (second bob)

What is the kinetic energy of a particle sliding on the parabola $y=x^2$?

A.
$$T(x, \dot{x}, t) = \frac{1}{2}m\dot{x}^{2}$$

B. $T(x, \dot{x}, t) = \frac{1}{2}m\dot{x}^{2}(1+x)$
C. $T(x, \dot{x}, t) = \frac{1}{2}m\dot{x}^{2}(1+4x)$

D.
$$T(x,\dot{x},t) = \frac{1}{2}m\dot{x}^{2}(1+2x^{2})$$

E. $T(x,\dot{x},t) = \frac{1}{2}m\dot{x}^{2}(1+4x^{2})$

What is the generalized force of a particle sliding on the parabola $y=x^2$?

- A. -mgxD. $2mx\dot{x}^2 - mgx$
- B. –2mgx

E. $4mx^2\dot{x}-2mgx$

C. $4mx\dot{x}^2 - 2mgx$

A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . What is the kinetic energy of the bead?

A.
$$T(\theta, \dot{\theta}, t) = \frac{1}{2}mR^{2}\dot{\theta}^{2} + \frac{1}{2}mR^{2}\Omega^{2}$$

B. $T(\theta, \dot{\theta}, t) = \frac{1}{2}mR^{2}\dot{\theta}^{2} + \frac{1}{2}mR^{2}\cos^{2}\theta\Omega^{2}$
C. $T(\theta, \dot{\theta}, t) = \frac{1}{2}mR^{2}\dot{\theta}^{2} + \frac{1}{2}mR^{2}\sin^{2}\theta\Omega^{2}$
D. $T(\theta, \dot{\theta}, t) = \frac{1}{2}mR^{2}\dot{\theta}^{2} - \frac{1}{2}mR^{2}\Omega^{2}$
E. $T(\theta, \dot{\theta}, t) = \frac{1}{2}mR^{2}(\dot{\theta} + \Omega\cos\theta)^{2}$

A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . When the bead is at angle θ , how high is the bead above the lowest point of the wire?

- A. $h = R\cos\theta$
- B. $h = Rsin\theta$
- C. $h = R(\sin\theta \cos\theta)$
- D. $h = R(1 \sin\theta)$
- E. $h = R(1 \cos\theta)$

A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . The equation of motion of the bead is

$$\ddot{\theta} + \frac{g}{R}\sin\theta - \Omega^2\sin\theta\cos\theta = 0$$

What are the equilibrium value(s) of θ ?

A. $\theta = 0$

B.
$$\theta = \cos^{-1}\left(\frac{g}{R\Omega^2}\right)$$

C. $\theta = \sin^{-1}\left(\frac{g}{R\Omega^2}\right)$
D. $\theta = 0$ and $\theta = \cos^{-1}\left(\frac{g}{R\Omega^2}\right)$
E. $\theta = 0$ and $\theta = \sin^{-1}\left(\frac{g}{R\Omega^2}\right)$

A bead of mass m slides on a circular wire of radius R. The wire rotates about a vertical axis with angular velocity Ω . The equation of motion for small motions about the equilibrium $\theta_0 = \cos^{-1}\left(\frac{g}{R\Omega^2}\right)$ is $\delta\ddot{\theta} + \Omega^2 \sin^2\theta_0 \,\delta\theta = 0$

What is the oscillation frequency of the bead? A. $\omega = \Omega$

B. $\omega = \Omega \sin \theta$

C. $\omega = \Omega \sin \theta_0$

D. $\omega = \Omega^2$

E. $\omega = \Omega^2 \sin^2 \theta_0$

Which of these constraints is holonomic?

- 1. A particle is constrained to slide on the inside of a sphere.
- 2. A disk rolls without slipping down an inclined plane (in one dimension).
- 3. A disk rolls without slipping on a table (in two dimensions).
- 4. A moving car is constrained to obey the speed limit.
- A. None
- B. Only one
- C. Exactly two
- D. Exactly three
- E. All four

A particle of mass m slides on the outside of a cylinder of radius a. A good choice of generalized coordinates is (r, θ) . What is the constraint equation?

- A. $f(r, \theta)=r$
- B. $f(r, \theta)=a$
- C. $f(r, \theta)=r+a$
- D. $f(r, \theta)=r-a$

A particle of mass m slides on the outside of a cylinder of radius a. What is the force of constraint (in the radial direction) when $\theta=0$?

- A. $Q_r(\theta=0)=mg$
- B. $Q_r(\theta=0)=mg/2$
- C. $Q_r(\theta=0)=0$
- D. $Q_r(\theta=0) = -mg/2$
- E. $Q_r(\theta=0)=-mg$

A particle of mass m slides on the outside of a cylinder of radius a. What happens to the (magnitude of the) force of constraint as θ increases?

- A. The constraint force increases.
- B. The constraint force decreases.
- C. The constraint force is constant.

A particle of mass m slides on the outside of a cylinder of radius a. What are the kinetic and potential energy of the particle?

A particle of mass m slides on the outside of a cylinder of radius a. What condition must be satisfied by the force of constraint at the point (angle θ_0) where the particle leaves the cylinder?

- A. $Q_r = mg$
- B. $Q_r = mg \sin \theta_0$
- C. $Q_r = 0$
- D. $Q_r = -mg$
- E. $Q_r = -mg \sin \theta_0$