Physics 3210

Week 4 clicker questions

Consider the phase plane of a mass-on-a-spring harmonic oscillator. Phase paths A and B both attempt to describe the motion. Which phase path is physically possible?

C. Both are possible.
D. Neither is possible.

Consider a collection of harmonic oscillators which all have the same energy but different relative phases. Which collection of phase points represents this system (at a given instant in time)?

Consider an area element in phase space. What physically must happen for a particle to move into the area across the left boundary?

A. The momentum p_{k} increases but the position q_{k} is constant.
B. The momentum p_{k} decreases but the position q_{k} is constant.
C. The momentum p_{k} and the position q_{k} increase.
D. The momentum p_{k} and the position q_{k} are constant.
E. The position q_{k} increases but the momentum p_{k} is constant.

Hamilton's canonical equations are: $\quad \dot{\mathrm{q}}_{\mathrm{k}}=\frac{\partial \mathrm{H}}{\partial \mathrm{p}_{\mathrm{k}}}$

$$
\dot{\mathrm{p}}_{\mathrm{k}}=-\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{k}}}
$$

What does this tell you about the derivatives $\frac{\partial \dot{\mathrm{q}}_{\mathrm{k}}}{\partial \mathrm{q}_{\mathrm{k}}}+\frac{\partial \dot{\mathrm{p}}_{\mathrm{k}}}{\partial \mathrm{p}_{\mathrm{k}}}$?
A. $\frac{\partial \dot{\mathrm{q}}_{\mathrm{k}}}{\partial \mathrm{q}_{\mathrm{k}}}+\frac{\partial \dot{\mathrm{p}}_{\mathrm{k}}}{\partial \mathrm{p}_{\mathrm{k}}}=1$
B. $\frac{\partial \dot{\mathrm{q}}_{\mathrm{k}}}{\partial \mathrm{q}_{\mathrm{k}}}+\frac{\partial \dot{\mathrm{p}}_{\mathrm{k}}}{\partial \mathrm{p}_{\mathrm{k}}}=0$
C. $\frac{\partial \dot{\mathrm{q}}_{\mathrm{k}}}{\partial \mathrm{q}_{\mathrm{k}}}+\frac{\partial \dot{\mathrm{p}}_{\mathrm{k}}}{\partial \mathrm{p}_{\mathrm{k}}}=\mathrm{H}$
D. $\frac{\partial \dot{\mathrm{q}}_{\mathrm{k}}}{\partial \mathrm{q}_{\mathrm{k}}}+\frac{\partial \dot{\mathrm{p}}_{\mathrm{k}}}{\partial \mathrm{p}_{\mathrm{k}}}=-\mathrm{H}$

Physics 3210

Week 3 - Friday clicker questions

What is the result of rewriting the central-force Lagrangian

$$
\mathcal{L}=\frac{1}{2} \mathrm{~m}_{1}\left|\dot{\mathbf{r}}_{1}\right|^{2}+\frac{1}{2} \mathrm{~m}_{2}\left|\dot{\mathbf{r}}_{2}\right|^{2}-\mathrm{U}(\mathrm{r})
$$

using

$$
\mathbf{r}_{1}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathbf{r}
$$

A. $\mathcal{L}=\frac{1}{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)|\dot{\mathbf{r}}|^{2}-\mathrm{U}(\mathrm{r})$
B. $\mathcal{L}=\frac{1}{2}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right)|\dot{\mathbf{r}}|^{2}-\mathrm{U}(\mathrm{r})$
C. $\mathcal{L}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}|\dot{\mathbf{r}}|^{2}-\mathrm{U}(\mathrm{r})$
D. $\quad \mathcal{L}=\frac{1}{2} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}|\dot{\mathbf{r}}|^{2}-\mathrm{U}(\mathrm{r})$

The central-force Lagrangian $\quad \mathcal{L}=\frac{1}{2} \mu|\dot{\mathbf{r}}|^{2}-\mathrm{U}(\mathrm{r})$
is spherically symmetric (it doesn't change if the coordinate system is rotate). What does this imply?
A. Energy is conserved.
B. Momentum is conserved.
C. Angular momentum is conserved.
D. Momentum and angular momentum are conserved.
E. Momentum and energy are conserved.

The central-force Lagrangian $\mathcal{L}=\frac{1}{2} \mu\left(\dot{\mathrm{r}}^{2}+\mathrm{r}^{2} \dot{\theta}^{2}\right)-\mathrm{U}(\mathrm{r})$
is cyclic in θ (θ doesn't appear in the Lagrangian). What does this imply?
A. The generalized coordinate θ is constant.
B. The generalized coordinate r is constant.
C. The generalized momentum p_{θ} is constant.
D. The generalized momentum p_{r} is constant.

