Physics 3210

Week 5 clicker questions

The central-force Lagrangian is
$$\mathcal{L} = \frac{1}{2} \mu (\dot{r}^2 + r^2 \dot{\theta}^2) - U(r)$$

What is the Lagrangian equation of motion in r?

A.
$$\mu(\ddot{r} - r\dot{\theta}^2) = F(r)$$

B. $\mu(\ddot{r} - r\dot{\theta}^2) = U(r)$
C. $\mu(\dot{r} - r\ddot{\theta}) = F(r)$
D. $\mu(\dot{r} - r^2\dot{\theta}) = U(r)$

A particle is observed to move in a spiral orbit $r=k\theta$. What is the force law that produces this orbit?

A.
$$F(r) = \frac{-\ell^2}{\mu r^2} \left(1 + \frac{2k^2}{r^2} \right)$$

B.
$$F(r) = \frac{-\ell^2}{\mu r^2} \left(1 + \frac{2}{r^3}\right)$$

D.
$$F(r) = \frac{-\ell^2}{\mu r^3} \left(1 + \frac{2k^2}{r^2} \right)^2$$

E.
$$F(r) = \frac{-\ell^2}{\mu r^3} \left(1 + \frac{k}{r^2}\right)$$

C.
$$F(r) = \frac{-\ell^2}{\mu r^2} \left(1 + \frac{k^2}{r^3}\right)$$

A particle moves in an orbit where its radius alternately increases and decreases with time. What determines the turning points of the motion?

A.
$$r=0$$
 D. $\frac{dr}{d\theta}=0$

B. $\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = 0$

E.
$$\frac{d^2r}{d\theta^2} = 0$$

C.
$$\frac{d^2r}{dt^2} = 0$$

In one transit from r_{min} back to r_{min} , an orbit moves by an angle $\Delta \theta$. What condition on $\Delta \theta$ must hold if the orbit closes on itself?

A.
$$\Delta \theta = 0$$
 D. $\Delta \theta = \frac{2\pi}{a}$, a integer

B. $\Delta \theta = 2\pi$ E. $\Delta \theta = \frac{2\pi a}{b}$, a and b integers

C. $\Delta \theta = 2\pi a$, a integer

Physics 3210 Week 5

Wednesday clicker questions

Exam grade distribution

Median = 66Standard deviation = 22

Current course grade=55% exam, 45% homework

In one transit from r_{min} back to r_{min} , an orbit moves by an angle $\Delta \theta$. What condition on $\Delta \theta$ must hold if the orbit closes on itself?

A.
$$\Delta \theta = 0$$
 D. $\Delta \theta = \frac{2\pi}{a}$, a integer

B.
$$\Delta \theta = 2\pi$$
 E. $\Delta \theta = \frac{2\pi a}{b}$, a and b integers

C. $\Delta \theta = 2\pi a$, a integer

Which of these plots show a physically possible V(r) for the gravitational potential?

For motion in gravitational potential characterized by V(r) as plotted, what type of motion corresponds to total energy E_2 ?

- A. Bounded circular motion with a fixed r.
- B. Bounded motion between a minimum and maximum r.
- C. Unbounded motion with a minimum r but no maximum r.
- D. Unbounded motion with neither a minimum nor a maximum r.

For motion in gravitational potential characterized by V(r) as plotted, what type of motion corresponds to total energy E_1 ?

- A. Bounded circular motion with a fixed r.
- B. Bounded motion between a minimum and maximum r.
- C. Unbounded motion with a minimum r but no maximum r.
- D. Unbounded motion with neither a minimum nor a maximum r.

Given the equation
$$\cos\theta = \frac{\frac{\ell^2}{\mu k} \frac{1}{r} - 1}{\sqrt{1 + \frac{2E\ell^2}{\mu k^2}}}$$

and the constants $\alpha = \frac{\ell^2}{\mu k}, \ \varepsilon = \sqrt{1 + \frac{2E\ell^2}{\mu k^2}}$

what is the correct way to rewrite the orbit equation?

A.
$$\frac{r}{\alpha} = -1 + \epsilon \cos \theta$$

B. $\frac{r}{\alpha} = 1 - \epsilon \cos \theta$
C. $\frac{\alpha}{r} = 1 - \epsilon \cos \theta$
D. $\frac{r}{\alpha} = 1 + \epsilon \cos \theta$
E. $\frac{\alpha}{r} = 1 + \epsilon \cos \theta$

We showed that
$$V_{\min} = -\frac{\mu k^2}{2\ell^2}$$

What is the correct value of ε when E=V_{min}?

A.
$$\varepsilon = 1$$

B. $\varepsilon = 0$
C. $\varepsilon = -1$
D. $\varepsilon = 2$
E. $\varepsilon = -2$

Physics 3210 Week 5

Friday clicker questions

We showed that
$$V_{\min} = -\frac{\mu k^2}{2\ell^2}$$

What is the correct range of ϵ when V_{min}<E<0?

A.
$$\epsilon = 1$$

B. $\epsilon = 0$
D. $0 < \epsilon < 1$
E. $1 < \epsilon < 2$

C. $-1 < \varepsilon < 0$

Which orbit corresponds to motion with larger total energy?

- C. The orbits correspond to motion with equal energy.
- D. It cannot be determined from the information given.

What is the correct value of ε when E=0?

A. $\varepsilon = 1$ B. $\varepsilon = 0$ C. $\varepsilon = -1$ D. $\varepsilon = 2$ E. $\varepsilon = -2$ Which parabolic orbit corresponds to motion with larger angular velocity (at a given angle)?

- C. The orbits correspond to motion with equal angular velocity.
- D. It cannot be determined from the information given.

What is the correct range of ε when E>0?

A. $\epsilon < 0$ D. $1 < \epsilon < 2$ B. $\epsilon = 0$ E. $\epsilon > 1$

C. $0 < \varepsilon < 1$

Which hyperbolic orbit corresponds to motion with larger total energy?

- C. The orbits correspond to motion with equal energy.
- D. It cannot be determined from the information given.

