1010, Fall 2012, Final

60 M/C Questions; Optional Long Answers Total points = 40.

For all of these problems, assume that air resistance is not important *unless* you are told otherwise.

Formulas you may or may not need.

	<i>y</i>	
$x = x_0 + vt$	$KE = \frac{1}{2} m v^2$	$F_c = (k q_A q_B) / r^2$
$v = v_0 + at$	GPE = m g h	
$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$W = f_{parallel} d$	$EPE = q \Delta V$
$\underline{\mathbf{v}} = (\Delta \underline{\mathbf{x}} / \Delta \mathbf{t}) =$	$W_{\text{ext}} - W_{\text{friction}} = \Delta PE + \Delta KE$	W_{ext} - $ W_{\text{fr}} = \Delta GPE + \Delta KE + \Delta EPE$
$(\underline{x}_{f^-} \underline{x}_0) / (t_{f^-} t_0)$	Power = E / t	$\Delta V = IR$
$\underline{\mathbf{a}} = (\Delta \underline{\mathbf{v}} / \Delta \mathbf{t}) =$	Tower - L / t	$P = I \Delta V = I^2 R = \Delta V^2 / R$
$(\underline{\mathbf{v}}_{\mathbf{f}}$ - $\underline{\mathbf{v}}_{0})/$ ($\mathbf{t}_{\mathbf{f}}$ - \mathbf{t}_{0})		$P - I\Delta V - IR - \Delta V/R$
$F_{friction} = 0.3 x weight$	$PV + \frac{1}{2} mv^2 + mgh = E_{total}$	
(moving obj, eg a book on a table)	$P + \frac{1}{2} \rho v^2 + \rho gh = E_{total}/V$	Power = $e \sigma T^4$ a
$\underline{F}_{net} = m \ \underline{a}$	$= E_{total}$ per unit volume	λ_{peak} = constant / T
$F_{\text{gravity}} = m g$	$v = \lambda f$ (light: $c = \lambda f$)	·
$\underline{F}_{\text{spring}} = -k\underline{\mathbf{x}}$	f = 1/T	

Conversions & Constants you may or may not need:

$$\begin{array}{ll} 1 \ \text{pound} = 4.45 \ \text{N} & 1 \ \text{mph} = 0.447 \ \text{m/s} & g = 9.8 \ \text{m/s}^2 \ (\ \text{but you can use } 10 \ \text{m/s}^2) \\ \\ \text{density of water} = \rho_w = \ \text{m} \ / \ \text{V} = 1000 \ \text{kg} \ / \ \text{m}^3 & \text{Speed of light, } c = 3 \times 10^8 \text{m/s} \\ \\ \sigma = 5.67 \times 10^{-8} \ \text{J/(s m}^2 \ \text{K}^4) & \text{k} = 8.99 \times 10^9 \ \text{Nm}^2/\text{C}^2 \\ \\ \text{charge on an electron, } e = 1.6 \times 10^{-19} \ \text{C} & \text{Mass of an electron, } m_e = 9.11 \times 10^{-31} \ \text{kg} \\ \end{array}$$

BUFF

Remember to write your name on your answer sheet. Write the color on your M/C answer sheet. Return both the answer sheet and the exam.

'On my honor as a University of Colorado at Boulder student I have neither given nor received unauthorized assistance on this work.'

Name

Signature _____